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NOTE 
 
(This note would have been referred to elsewhere as an “Out-of-hours” note; however, of course, all of the 
Optional Extras section is “out-of-hours”!) 
 
If you are intending to study Part A: “Using Control Charts on Funnel Experiment data” then on pages        
6  and 7 you will need to draw run-charts and then control charts of your data for the first two Rules of the 
Funnel.  Your data for Rule 1 are on Day 3 page 47 [WB 40], and your data for Rule 2 are on Day 3 page 44 
[WB 38–39].  You may therefore find it convenient to make a separate copy of those pages in order to save 
you from lots of page-turning while you are constructing those charts. 
 



!"#$%&'()*+#,'-)).))"'/0)!)

INTRODUCTION 
)

Yes: this material is all “optional extra”.  Your understanding of the main material of 12 Days to Deming 
does not depend on your reading any of this.  So then the obvious question is why should you bother to 
read any of it?!  The only reason right now, as you read this page for the first time, would be that one or 
more of the topics in the list of Contents that you’ve just seen have struck you as being of possible interest 
to you.  If not then, indeed, don’t bother! 
 
But, in addition to the main title “Optional Extras”, there were some words in brackets.  Yes, these Optional 
Extras are all connected with control-charting—although some of what’s in that list of Contents does not 
appear to fit that description.  In particular, what has “A crash-course in conventional Statistics!” got to do 
with control-charting?  I’ll get onto that very soon. 
 
On Days 2 and 3 and during parts of both of the projects, the emphasis was on understanding variation 
and why that is useful, and the role it plays in the improvement of processes of all kinds, especially man-
agement processes.  That main material naturally included some initial work on constructing and interpret-
ing control charts, with the section “Control Chart + Brain” on Day 3 pages 26–29 being particularly impor-
tant for helping you to interpret them.  But, as with valuable tools in any area of work, there is always much 
more experience to be gained on how to use them wisely and to best advantage over and above merely 
following the basic guidance in the instruction leaflet.  So this optional extra material focuses not on why 
control charts should be used—which I believe you now know already—but how to use them wisely. 
 
So there can be little doubt as to why Parts A and B are here.  Firstly, following the coverage of under-
standing variation and control charts in the morning of Day 3, you spent the afternoon working with the 
Funnel Experiment.  But unfortunately there was insufficient time available there to gain more experience by 
using control charts on data (both yours and mine) from that experiment.  So Part A here fills that gap. 
 
Secondly, the coverage of control charts during the main course included their use only with what I called 
“one-at-a-time” data, because that is all that is available in most areas of application.  However, there are 
some areas, particularly (but not only) in manufacturing, where “a-few-at-a-time” data are easy to obtain: 
so Part B provides some introductory details and guidance on that further development of the technique. 
 
However, as already mentioned, on looking further down the list of Contents there is little doubt that the 
title of Part D catches your eye!  Why on Earth should “A crash-course in conventional Statistics!” be here?  
For doubtless you will have noticed in the main course material that both Dr Deming and I, amongst others, 
have been at some pains to emphasise the irrelevance of conventional Statistics to the understanding of 
variation as developed by Walter Shewhart and so enthusiastically adopted by Dr Deming that I sometimes 
refer to it as the “launchpad” of his vitally important life’s work.  
 
But don’t misinterpret what I have said about conventional Statistics.  It is a fascinating subject, and it is a 
very useful subject in many areas.  Hopefully, if you have no background in conventional Statistics, what 
we have developed in this course regarding the understanding of variation and the use of control charts will 
have seemed pretty sensible.  But that might not have been so true if you have had some background in 
conventional Statistics since some conflicts between the two approaches may well have then become 
apparent to you.  Let me refer ahead to the start of the very final part of these Optional Extras: 
 

“When introducing control charts (for one-at-a-time data) to delegates at my seminars, reactions 
were usually very positive, even from those who started out by saying such things as ‘I can’t do 
Statistics’ or, worse still, telling me in advance that they hated the subject!  A little while later there 
were instead expressions of relief, even surprise, when they discovered how straightforward the 
technique is, how relatively simple are the calculations involved and, before long, how they were 
able to interpret what the charts were telling them.” 
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But there were exceptions.  On Day 1 page 6 I said: 
 

“Over the nearly 20 years of my seminars on Dr Deming’s teaching I rarely suffered from any ‘diffi-
cult’ delegates.  The few that I had could be divided into two types.  One type were very senior 
managers, the other type were those with some qualification in Statistics.” 
 

To tell you the truth, the latter were often the more difficult type.  That may sound rather flippant, but it isn’t.  
It can be very serious.  If it happens to you then I want to help you to deal with it.  For you may not have 
any qualification in Statistics.  So are the people in your organisation likely to believe you or the one who is 
qualified in the subject? 
 
If you had a good teacher on conventional Statistics then, wholly unlike those delegates referred to at the 
bottom of the previous page, you may have become very enthusiastic about that version of the subject.  
I know, for I was one who was fortunate enough to have such an excellent teacher.  He was the late Dr 
Clive Granger who was eventually awarded the Nobel Memorial Prize in Economic Sciences in 2003 and 
was knighted in 2005.  Had it not been for the way he taught the subject, I might have joined the ranks of 
those who “couldn’t do Statistics” and who “hated the subject”!  As it was, I decided to specialise in Statis-
tics, had Clive as the supervisor of my PhD research, and subsequently became the first full-time Lecturer 
in Statistics in the University of Nottingham’s Department of Mathematics.  But ... recall some of what I said 
about my first exposure to the Red Beads Experiment on Day 2 and to some of Deming’s other teaching on 
the more statistical aspects of his work.  Where were the probabilities, where was the normal distribution, 
why that “rough-and-ready” guidance about “3!” coming from Shewhart rather than, for example, “3.09!” 
which has a really nice probability interpretation?  Fortunately, very fortunately, I also had two very excel-
lent teachers in the shape of Drs Deming and Wheeler to help me through all that.  But relatively few others 
have had all that supreme good fortune. 
 
So, whether or not you have a background in conventional Statistics, there you have many clues as to why 
much of the remaining content has been included within these Optional Extras.  If, like me, you had a good 
grounding in conventional Statistics, I hope that what you will find here, starting at Part C, will help you 
through the problems that I had.  And if you haven’t, but there are others around you in your organisation 
who do have such a background, they are likely to be quite an obstacle to your progress with what I may 
call “the real thing”.  The “crash-course” will help you to understand what their view of Statistics is all about 
and why they don’t think much of what you are trying to tell them (and vice-versa)!  That understanding will 
help you to communicate with them.  If you understand the way that they think, and why, they are likely to 
be more willing to listen to you.  So there is more material here to help you to then make progress.  I would 
point in particular to (a) some writing about “statistical studies” from Deming which I describe in Part C and 
to (b) some computer simulation studies that are in Part E.  Those simulation studies are actually set wholly 
within the conventional statistician’s understanding of the subject; nevertheless, they prove conclusively 
that some of the main arguments which are often voiced about control charts by the conventional statisti-
cian are patently and completely wrong. 
 
Finally, Part F is a “Technical Section” which is likely to be of more interest to mathematically-inclined stu-
dents: a number of results are verified here that are simply quoted and then used either elsewhere in the 
course or in these Optional Extras, and there is also some additional discussion on the practical problem 
which is faced by anyone who starts using control charts: how many data to use when computing your 
control limits. 
 
So please just pick and choose what, if anything, you read here in these Optional Extras.  Or just browse 
through them and see if anything catches your eye.  Maybe there will be nothing—if so, that’s fine: just 
stick to the main course.  But these Optional Extras will, of course, all still be here if and when the time 
comes later when you suspect that some of them might be useful to you after all.  
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PART A:  USING CONTROL CHARTS ON FUNNEL EXPERIMENT DATA 
—an extension of Major Activity 3–h 

 

1.  Introduction 
 
If you have read my discussion of the Funnel Experiment Major Activity 3–h on Appendix pages 15–18, you 
will remember that I studied two simulated sets of Funnel Experiment data that had been obtained using a 
computer program which I’d written in order to demonstrate the Funnel Experiment in my seminars.  You, 
of course, might also like to reproduce that experiment by using a spreadsheet or writing a computer pro-
gram if you are talented in that way—and, if you are able, I recommend that you do so.  I personally found it 
extremely instructive to play around with my program in order to become familiar with the experiment and 
with the learning that it helps to develop. 
 
In case that might be possible, let me tell you what I did in my seminars.  As you will remember, Dr Nel-
son’s original version of the experiment is rather tricky to carry out for real except in a small group that has 
plenty of time to spend on it.  And my “one-dimensional” version of the experiment that you used during 
Major Activity 3–h is also really only convenient for at most a small group rather than being in a form suit-
able for presentation in front of a larger audience.  So that is the main reason I initially wrote a computer 
program to demonstrate the Funnel Experiment in my seminars.  It was presented on-screen in front of the 
delegates, and represented a bird’s-eye view of the table in Lloyd Nelson’s original version of the experi-
ment.  A little icon indicated the current position of the funnel above the table and, at the click of a button, 
effectively a marble was dropped through the funnel and its final resting position was shown.  At the fol-
lowing click of the button, the funnel was moved to its next position according to whichever Rule was being 
demonstrated.  And so on.  So this program enabled each of the four Rules to be initially carried out slowly 
step by step, then slightly faster, and then as fast as we liked.  This therefore allowed the delegates to see 
and understand precisely what the Rules are before proceeding to examine their effects.  All the previous 
resting positions of the marble were retained on-screen in order to study the long-term patterns and inter-
pretations. 
 
The prime purpose of Day 3 as a whole is best summarised by the short title of Don Wheeler’s excellent lit-
tle book:  Understanding Variation.  So, looking forward to the time when you are actively working on inter-
preting real data and improving processes, etc, a really important aspect of Day 3 is your becoming familiar 
with the use of control charts in order to help you to do just that—understand variation—and know what is 
sensible to do as a consequence of that understanding.  From that viewpoint, a one-dimensional version of 
the Funnel Experiment with my approach of using a couple of dice or something similar to simulate the 
variation is actually more fruitful than Dr Nelson’s original two-dimensional version in the sense that the 
data we obtain can indeed be immediately analysed on control charts.  So, assuming you are now familiar 
with the Rules from your work in Major Activity 3–h, I would definitely recommend that you develop a one-
dimensional version if you are willing and able to develop a computer program or devise some spreadsheet 
method to represent the experiment.  However, that’s for the future!  For now, let’s content ourselves by 
working with the data you generated during the Major Activity and with the data from my two computer 
simulations.  Having spent some considerable time in the morning of Day 3 on becoming familiar with con-
trol charts, it would of course have been logical to construct control charts of all the Funnel Experiment 
data in the afternoon.  But time would not permit.  That is why I have decided to begin these Optional 
Extras by making up for that forced omission.  Depending on how much time you would like to spend on 
this, there are various possibilities available.   
 
If either you never got round to reading that material which begins on Appendix page 15, or it’s been quite 
a while since you did so, I suggest you first read through that as it will help to put you in the picture and 
remind you of matters which will be useful as you revisit the Funnel Experiment here.     
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As you’ll recall, in Major Activity 3–h you summarised your data from Rules 1 and 2 of the Funnel on histo-
grams and your data from Rules 3 and 4 on run charts.  Histograms would have been almost meaningless 
with Rules 3 and 4 since those processes were hopelessly out of control.  However, as it turned out, histo-
grams were extremely useful in comparing Rules 1 and 2.  Rule 1 is the straightforward in-control process, 
and a histogram can often provide some additional useful information about the output from a stable proc-
ess.  Further, if you hadn’t constructed and compared the histograms for those two sets of data, it would 
have been quite tricky to figure out what Rule 2 was producing.  Run charts and, even more so, control 
charts can often tell you the most important things to know about a process’s behaviour, but sometimes 
the histogram can shed extra light on the subject. 
 
So, what are those “various possibilities” of what you might do next?  The most challenging approach 
would be to throw you in at the deep end and simply suggest you construct control charts of your data for 
all four Rules, and see how you get on.  When you get to Rules 3 and 4, starting on page 8, you will already 
have your run charts available in the main text or the Workbook, but with Rules 1 and 2 you will need to 
begin by drawing the run charts here.  Similarly as with Rules 3 and 4 in the main text, I have provided here 
your graph-paper for Rules 1 and 2 with the first five points of the run charts already drawn in.  So firstly 
complete those run charts using your data from Day 3 page 47 [WB 40] which came from Rule 1 (the 
Second Strategy in the Ford case) and page 44 [WB 38–39], i.e. Rule 2 (Ford’s First Strategy).  Then move 
on to producing your control charts: refer back to Technical Aid 6 on Day 3 page 16 if you need to.  Make 
some notes on what you learn and also on any problems that you encounter.  When constructing your own 
control charts, you will, as always, need to decide on your baseline, i.e. how many data to use for com-
puting the control limits (see Technical Aid 8 on Day 3 page 17).  As a quick reminder, in that Technical Aid 
I suggested a baseline of between 10 and 15 observations—or less if you’re in a hurry to get started!  There 
is much more detailed discussion on the length of the baseline at the start of the Technical Section in these 
Optional Extras on pages 71–74.  
 
Having worked on control charts for all four Rules using your own data, then move on to my control charts 
and discussion, starting on page 9, for the two simulations that I worked with on Appendix pages 15–18.  
Here I’ve found it useful to extend the control charts to 50 points rather than the 40 shown there—the extra 
length permits a few effects to be demonstrated more clearly.  You might be able to expand on the notes 
you will have made earlier, and maybe the discussion here will shed light on any problems you found. 
 
A possibly more appealing approach might be to reverse the suggestions I’ve just made.  That is, first read 
the material on my two simulations beginning on page 9.  Then, in particular and if it appeals to you, you 
could then use the same approach with your own data from Activity 3–h as I have done there by producing 
both “short” and “long” control charts: that can be quite instructive. 
 
If you are short of time then you could, of course, take the really easy way out: just read my material here 
for the time being, and then return to try out control charts with your Funnel Experiment data on some later 
occasion! 
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2.  Rules 1 and 2 of the Funnel 
 

So now go ahead with Rules 1 and 2 using the data you generated on Day 3.  Again, your Rule 1 (Ford’s 
Second Strategy) data are on Day 3 page 47 [WB 40] and the data from Rule 2 (Ford’s First Strategy) are on 
Day 3 page 44 [WB 38–39].   
 
Seeing that you have not drawn the run charts of these data previously, I suggest it would be a good idea 
for you to develop the charts for Rules 1 and 2 “live”.  That is to say, reflect the more usual and better prac-
tice of first (a) drawing the run chart over your chosen baseline but no further; then (b) computing the 
positions of the Central Line and the control limits from those data; (c) inserting these three lines on the 
graph-paper throughout the baseline and then somewhat further into the future if all seems to be well at 
that stage (i.e. if it currently appears feasible that the process is in control); and finally (again if all seems 
well) (d) continuing the chart one point at a time.  Imagine that you were seeing these data for the first time, 
so that you don’t know beforehand what you learned when generating them and constructing their histo-
grams back on Day 3.  There is room for your computations and whatever notes you care to make under 
the graph-paper on the next two pages.  In both cases, describe what you feel the control chart is telling 
you as and when you are developing it: a kind of brief running commentary. 
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3.  Rules 3 and 4 of the Funnel 
 
The “motivation” for the various Rules is discussed in !DemDim Chapter 5, so there is no need for me to say 
much about that here.  In brief, recall that, as we’ve indicated previously, Rule 3 is at first sight a rather 
innocuous-looking variant of Rule 2, while Rule 4 concentrates on trying to minimise average short-term 
variation.  The latter is, of course, an interesting mixture of good and bad.  It is good to reduce variation, 
but is it wise to do so only in the short term?  Let’s carry out similar procedures as previously but now for 
Rules 3 and 4, and see what happens. 
 
Seeing that you have already drawn the run charts for your Rules 3 and 4 data (Day 3 pages 51 and 55 [WB 

43 and 45] respectively, in each case preceded by the relevant data), I’m not going to suggest that you now 
start again!  But you can at least pretend that you are going through the same procedure you have just 
been following with Rules 1 and 2, i.e. developing the control charts “live”: you will, of course, find some 
substantial differences compared with what happened in them! 
 
So, in both cases, compute the positions of the Central Line and control limits from the data over your 
chosen baseline and draw them in on your run chart.  Now, it’s not impossible that in either or both cases 
you could actually get one or more signals (points outside the control limits) even during the baseline.  This 
is more likely with Rule 4 than with Rule 3.  But, even if that doesn’t happen, imagine you haven’t seen the 
rest of the run chart (try covering it up for the time being!) and see if you would already have any different 
thoughts compared with what you had at the same stage in your “running commentaries” on Rules 1 and 2.  
Seeing that, of course, you already know what actually happened with these processes, that pretence 
might be quite difficult!  But, with Rule 3, are you already seeing the first signs of the zig-zag effect that 
becomes the overwhelming feature of that rule sooner or later?  Or, with Rule 4, are you already seeing 
some indication of the “wandering” nature of that process?  It might be a good idea for you to briefly look 
back at Day 3 page 19 and remind yourself of the control charts on the left-hand side of that page.  If you 
recall, those processes were mainly fairly happily in control, although there was some doubt regarding a 
possible seasonal effect in the chart at the bottom of that page.  But, generally, the question to ask is 
whether or not your charts look noticeably different from those charts on the left of Day 3 page 19 over the 
baseline.  And then gradually uncover the rest of the chart: in both cases, describe what you feel the chart 
is telling you, and how soon it is doing so. 
 
Obviously, I don’t know how your data turned out, so I can’t describe what you will or won’t see.  So it’s 
over to you now to discover what happens.  When you return, move onto the next section to study the con-
trol charts and my discussions on them for the two sets of computer-generated Funnel Experiment data 
that I introduced on Appendix page 15. 
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4.  Control charts for the computer-generated data 
 
I hope you will have found it helpful to gain that additional experience of constructing and interpreting con-
trol charts.  However, to be fair, Funnel Experiment data are not the best kinds of data to impress you of 
the control chart’s usefulness!  The reason stems back to something I said on Day 3 page 18:  “The control 
chart becomes really valuable when it is unclear as to whether or not the run chart is indicating there are 
some special causes—which is the more usual situation”.  However, as we have seen, the run charts that 
result from the Funnel Experiment are mainly pretty easy to interpret!  The Rule 1 run chart will of course 
have generally appeared very stable; and, unless you were very unlucky with your throws of the dice, 
inserting the control limits should then have produced control charts reminiscent of the various control 
charts that you have seen of stable processes such as those from the Red Beads Experiment and the other 
in-control processes on the left of Day 3 page 19.  And, almost certainly, you didn’t really need control 
limits when dealing with Rules 3 and 4 to convince you that those processes were unstable! 
 
But let’s fill in a little more detail.  Upgrading a run chart to a control chart by inserting control limits results 
in two important gains.  First, it enables you to have much greater confidence in your judgment as to 
whether the process is or is not in statistical control, whereas with many run charts such judgment is little 
more than guesswork.  And second, it often allows you to make your judgment earlier than if you were only 
using a run chart.  Both of these features are extremely important advantages in practice. 
 
So let’s now examine control charts produced by the two runs of the Funnel Experiment that were demon-
strated in the Appendix.  It will be useful to look at both the complete control charts and also how the 
charts appear when the control limits are first drawn in—I’ll refer to the latter as the “short” control charts.  
That, of course, occurs as soon as the baseline data have been recorded: I have used a baseline length of 
15 in the following charts.  What might we learn and what might we predict at that early stage?  I’ll deal 
with the charts from the two simulations for one Rule at a time. 
 
Rule 1  
 
As expected, the short versions of the control charts for 
Rule 1 hold no surprises for us.  
 

As we would have hoped, the Central Lines and the 
control limits are quite similar in the two simulations 
—although, of course, they’re not in exactly the same 
places.  How could they have been?  They’re almost 
bound to be different when using different sets of data from a process, however stable the process may 
be.  This is analogous to the situation in conventional Statistics when drawing samples from the same dis-
tribution or “population”: the sample means and sample standard deviations (see page 18 and onward in 
Part B of these Optional Extras) will always differ, except for a very rare fluke.  

 
In the long versions of the control charts 
I’ve coloured in green the sections fol-
lowing the baseline, i.e. after the posi-
tions of the control limits have been cal-
culated, drawn in and then extended in-
to the future.  And again, as expected, 
we get two charts strongly reminiscent 
of the control charts representing the 
stable processes on Day 3 page 19. 
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Rule 2 
 
Rule 2 is the case where, as we know both from the Ford example and from your own work in the Major 
Activity, the situation is undesirable compared with Rule 1, in particular suffering from approximately 40% 
greater variation.  However, going by Bill Scherkenbach’s account of the Ford example, it appears that the 
people involved there had no history of using Rule 1—it would seem that the process was actually set up 
as Rule 2, i.e. using the automatic compensation equipment.  Perhaps a convincing salesperson for the 
equipment was around when the process was being designed!  Also, as far as we know, they were not ana-
lysing their data even on a run chart, let alone a control chart: the implication from those histograms is that 
they were simply judging quality in terms of conformance or non-conformance to specifications (a poor 
method of judgment investigated on Day 7).  And, with the compensation equipment in operation, almost 
all of the shaft diameters were within specifications—as seen in the first histogram on Day 3 page 5.  
 

Mind you, the histogram indicates that quite a few were uncomfortably close to the edges of the specifi-
cations.  In fact (as observed on Day 3 page 9), if you count carefully, that histogram appears to show 
only 49 diameters rather than the 50 that were claimed, so maybe one had just slipped over the edge 
and—shall we say?—vanished! 

 
But suppose they had been using a run chart.  Would they have noticed anything was amiss?  Without a 
Rule 1 run chart with which to compare, the answer is probably No.  (Presumably, had a comparison with 
Rule 1 been available, particularly with histograms, they would have noticed Rule 2’s larger variation along 
with the fact that none of Rule 1’s diameters were close to the edges of the specifications.)  So what else 
might have been seen?  I did point out in the Appendix that Rule 2’s run charts are relatively “jagged”, but it 
would probably have taken an experienced eye to notice something of that nature. 
 
So how about control charts of the Rule 2 data in our two simulations?  Do they appear at all different in 
nature from control charts of genuinely in-control processes?  Let’s see. 
 
Again let’s look first at the short control charts of the two 
simulations. The second one does not appear to have 
anything much to tell us, but I suggest the first one does.  
There are two features which, compared with the control 
charts of the six stable processes on Day 3 page 19, look 
rather odd.  First, there is the pronounced zig-zag in the 
central part of the baseline.  It’s rare to see anything like 
that in the pictures on Day 3 page 19.  But also note the 
relatively large amount of “white space” between the 
graph itself (i.e. the run chart) and the control limits, especially between the graph and the lower control 
limit.  That’s the same effect as was seen in the illustration on Day 3 page 24—the effect often referred to 
as “hugging the Central Line”, i.e. where none of the points are anywhere near the control limits.  We have 
previously described an in-control process as one where (almost) all the points are “comfortably contained” 
between the control limits; but “hugging the Central Line” is where they are far too comfortably contained 
between the limits!  Hugging the Central Line is not good—you should be very suspicious of it! 
 
And, as becomes very clear, in the first 
simulation of the experiment this effect 
continues all the way through the com-
plete control chart.  Even in the second 
simulation (see the chart at the top of 
the next page) where the effect is less 
pronounced, note that, throughout all 
50 values, not one gets at all close to 

40

30

20

40

30

20

40

30

20



!"#$%&'%()*+,%-.+$#./%-0"#$)%.+%12++3/%4563#*73+$%8"$"%

!"#$%&'()*+#,'-)).))"'/0)!!"

either limit—so I suggest that that might  
be considered as at least slightly suspi-
cious!  But I’d say the clear impression 
in the first case is that the control limits 
are simply “wrong”: they should be clo-
ser together (so yet again compare with 
those six in-control charts on Day 3 page 19).  And, having made that observation, maybe it would seem 
that those limits in this second simulation should at least be a little closer together.  
 
But, with our knowledge of what Rule 2 is, isn’t that precisely what we would expect?  Rule 2’s compensa-
tion mechanism virtually ensures that particularly high values are followed by particularly low values, and 
vice-versa—i.e. the zig-zag effect already observed.  But recall how the control limits are computed—the 
distance between them is simply proportional to the average moving range MR.——

  Clearly,  Rule 2’s zig-zag 
effect increases the moving ranges (the differences between adjacent values) compared with what would 
be expected if that compensation scheme were not operating.  The control limits are indeed “wrong” in the 
sense that they now have no chance of reflecting the actual variation, precisely because of that zig-zag 
effect. 
 
Now, as we have seen, the hugging-the-Central-Line effect will be more apparent with some sets of Rule 2 
data than others: it’s a matter of luck!  But, at least, we now know that the control chart stands a reason-
able chance of indicating a problem with Rule 2, even when there isn’t a Rule 1 version with which to com-
pare it.  That is much less true with both the run chart and the histogram. 
 

(Please move on to the next page for Rule 3 and then Rule 4.) 
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Rule 3 
 
Since you have already seen the run charts of both Rules 3 and 4, you may well suspect there is not much 
further description necessary in either case.  You’d be right!  There are just a couple of points worth men-
tioning but, by and large, the run charts told the stories more than adequately. 
 
One aspect immediately noticeable about Rule 3’s short 
control charts is their similarity to those of Rule 2 on  
page 10.  A moment’s reflection will show why.  Recall 
that the only difference between the two Rules is that in 
Rule 2 the funnel is moved relative to its current position 
while in Rule 3 it is moved relative to the target of 30.  So 
while the funnel, and hence the marble, both stay fairly 
close to the target, the Outcomes (i.e. positions of the 
marble) will be quite similar in the two cases.  And that is 
what we see in these short control charts. 
 
Sooner or later, however, the marble will 
finish up rather further away from the target 
than previously which will, in Rule 3’s case, 
position the funnel at that same larger dis-
tance on the other side of the target.  And 
then the very severe zig-zags are likely to 
really get moving!  It is possible that, with 
some lucky throws of the dice, they may 
die out for a while—as does indeed happen 
during the first simulation alongside follow-
ing those early zig-zags within the base-
line).  But be sure:  they will always return 
and in time will become absurdly large as is 
demonstrated here in the second simula-
tion: 
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Rule 4 
 
Whereas Rule 3’s short control charts did not give much 
warning of the horrors to come, Rule 4’s short charts 
immediately show conclusive evidence of severe prob-
lems.  They would have done so even if we had been 
using a shorter baseline than recommended in my gen-
eral guidance.  The reason lies in the very motivation for 
Rule 4: to reduce short-term variation.  And remember 
that it is precisely the short-term variation which the moving ranges (and hence MR—–  itself) measure, with 
the immediate effect here of substantially narrowing the gap between the control limits.  That reduced 
short-term variation is, of course, a delusion: in reality, this process is not capable of such low variation.  
So, if you were trying Rule 4 after you had tried Rule 2 (or indeed Rule 1), you might be quite excited when 
you compute Rule 4’s limits!  But not as soon as you insert them on the run chart and see how the graph 
behaves in relation to them.  The “wandering” effect that was already discussed on Appendix page 19 
causes points well outside the control limits to start arriving thick and fast—probably, as in both simula-
tions here, even within the baseline itself or if not then very soon afterwards. 
 
So if you obtained either of those short 
control charts in practice then there’d 
have been no point in extending their 
control limits into the future.  The pur-
pose of control limits is to help you to 
notice when the process goes out of 
control.  But here you already know it’s 
out of control, and so hopefully instead 
you would be immediately trying to find 
out why!  However, just for complete-
ness (and perhaps amusement!), here 
alongside are the long control charts! 
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Let’s now summarise and develop what we have learned in these last few pages.  Note that we haven’t 
really been studying the four processes in terms of control charts—we’ve been doing the reverse!  The truth 
is that we had already learned most of what there is to know about these processes from your own work in 
the Major Activity and from the two sets of simulated data in the Appendix.  We have instead been investi-
gating what the control charts look like when each of the four Rules is in operation.  And that’s useful: the 
way one often studies suggested procedures or methods is to let them run under known conditions and 
see what happens.  We now know that if an unjustified compensation effect is in operation then the control 
chart will have unusually wide control limits, possibly resulting in the hugging-the-Central-Line phenome-
non and/or (in the case of Rule 3) wild zig-zags which eventually go outside even those over-wide control 
limits.  Conversely, we also know now that if adjacent values in the data are unnaturally close together—as 
they are bound to be with Rule 4—then the control limits will be correspondingly close together: so much 
so that we are likely to get points outside those limits even within the baseline, let alone subsequently.  
Also, of course, the “wandering” effect will be all-too-obvious. 
 
The fact that the control chart shows these features so clearly is particularly notable since these are kinds 
of data which it was not really designed to work with!  As you know, the basic idea of the control chart is 
that the formula for deriving the control limits is designed to indicate the scale of the process’s common-
cause variation—even, in many circumstances, when the process is already out of control (which is itself, of 
course, quite an achievement).  But how else could the control limits enable the chart to detect special 
causes?  When the process is in control, we’ve seen both here and with the collection of six processes on 
Day 3 how well the control limits illustrate the extent of the common-cause variation.  But how can they still 
manage to do that when the data from which they are computed are disturbed by special causes?   
 
That question was largely addressed in the “How do we compute those control limits—and why?” section 
beginning on Day 3 page 13.  There we argued how moving ranges can often succeed pretty well in meet-
ing that challenge, certainly compared with the conventional statistician’s standard deviation (about which, 
if you wish, you can read more in Part B of these Optional Extras).  However, in the middle paragraph of 
Day 3 page 15, I warned you that the Funnel Experiment reveals some serious exceptions where even the 
moving-range method is wholly unable to perform as just described.  For to say that moving ranges can 
reflect the scale of the process’s common-cause variation even if computed from data recorded when the 
process is out of control does depend on an implicit assumption.  This assumption is that it’s mostly true 
that the two adjacent values contributing to a moving range are themselves still free to be “typical” values 
from the process.  This is not unusual with many special causes that occur in practice.  But it’s clearly not 
the case with Rules 2, 3 and 4.  In Rules 2 and 3, if one value is high then it is likely that the next will be low.  
Conversely, in Rule 4 any two adjacent values are bound to be relatively close to each other.  Both effects 
clearly destroy the ability of moving ranges (and hence   MR

——
 which is used in the computation of the limits) 

to guide us as to the size of common-cause variation.  Data in which any one value considerably influences 
what the next value is are said to be “autocorrelated”; in the case of Rules 2 and 3 they are said to be 
negatively autocorrelated, and in the case of Rule 4 they are positively autocorrelated. 
 
So now you know that, if you see either the zig-zag effect or the “wandering” effect in a control chart, you 
might immediately have a suggestion as to what might be happening in the process being studied.  But 
beware:  don’t jump to conclusions without further thought.  Although unjustified compensation causes the 
zig-zag effect, it’s not the only possible cause of that effect.  As a stupidly-simple example, let’s suppose 
you are recording the outside temperature every 12 hours: at midday and at midnight.  Yes, I think that 
would produce a pretty impressive zig-zag!   
 
Less trivially, suppose the data alternately measure efficiency or productivity etc of both a day-shift and a 
night-shift.  There could be many reasons for a zig-zag here: effectively, you are likely to have two proc-
esses in operation rather than just the one.  The night-shift might be disadvantaged because of poor light-
ing or an inefficient heating system.  Alternatively, the day-shift may be disadvantaged since the computer 
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system runs rather slowly during the daytime because everybody is using it—whereas if relatively few staff 
are working the night-shift then the computer may be operating like greased lightening!  The crucial prac-
tical point is that, as soon as the zig-zag is seen on the control chart, discussions can immediately start on 
the reason(s) for it—and, because the control chart is such a straightforward statistical tool (not encum-
bered by what some might consider to be the usual mathematical mumbo-jumbo of conventional statistical 
techniques), everyone can be involved in the discussion—not just the “experts”.  The importance of this 
with, say, process improvement teams is beyond price.  Similarly, the control chart can serve very effec-
tively as a communication language within and between departments in an organisation, between different 
levels of management, and even between organisations. 
 
There are also lots of circumstances which will lead to positively autocorrelated data.  Financial data are a 
good case in point.  Stock market indices, inflation figures, exchange rates, etc are bound by their very 
nature to be highly positively autocorrelated since normally it’s the case that any figure is relatively close to 
the previous one compared with the variation as a whole.  Does that mean control charts can have no use-
ful role to play in studying such processes?  No.  But agreed, there’s no point in simply plotting data whose 
main characteristics we already know and which will almost surely drown out anything else that might be of 
interest.  One very simple but often effective ploy is instead to chart the changes day-to-day (or whatever 
time-interval is relevant)—these changes are, of course, the same as the moving ranges except for being 
recorded as positive or negative according as whether they go up or down.  Since this simple manoeuvre 
almost completely extinguishes the autocorrelation effect, such a chart is now quite likely to be able to dis-
cover other special causes that may be affecting the process. 
 
An aspect I would like to emphasise regarding this discussion is that we haven’t been involved here with an 
exercise in Mathematics but rather an exercise in common sense.  And that is a valuable contrast between 
(a) using control charts and (b) using many of the conventional statistical approaches. 
 
Of two books by Dr Wheeler that I particularly recommend, some such matters are touched upon in Under-
standing Variation but are dealt with more comprehensively in Making Sense of Data. 
 

 
 
 

)
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PART B:  A-FEW-AT-A-TIME DATA 

 
1.  Introduction 

 
I first mentioned “a-few-at-a-time” data a long while ago: in the discussion on the First Paradox (Appendix 
page 2).  So it may have been quite some time since you saw it, and therefore I’ll reproduce it here: 
)

“Another great value of Don [Wheeler]’s work is that, whereas it used to be the case that control 
charts were generally considered to require small samples of data to be available at each time-point 
represented on the chart, he popularised an excellent and simple method of how to construct con-
trol charts when only one value is obtainable at any particular time.  Samples are often easily 
obtainable in manufacturing processes, but single values are all you can get with the majority of 
other types of process.  Since most people only have ‘one-at-a-time’ data available in their proc-
esses, that type of data is all I consider in the main material of this course, in the Springboard 
article, and in the case studies covered in both ST and EST.  However, in the latter little books, I do 
also briefly describe charts that are suitable for ‘a-few-at-a-time’ data.” 
 

Let me emphasise a few basics.  By “a-few-at-a-time” data I am implying that we are now dealing with 
what were referred to above as “samples” rather than just single values.  The implication of “at-a-time” is 
that the data concerned are recorded pretty much at the same time and under the same conditions.  The 
adjective “random” is often seen, and a “random sample” effectively implies that, in addition to “recorded 
pretty much at the same time and under the same conditions”, the data in the sample are otherwise not 
related to each other in any way.  You may think that I am being rather fussy with my details here, but it 
turns out that such details are important regarding how these data will be regarded and used when being 
analysed on control charts.  In fact, rather than just “samples” or “random samples”, a different word has 
traditionally been used to refer to them in the control-charting context, namely “subgroups”. 
 
Why “subgroups”?  Actually, I can’t recall ever having seen that word very precisely described!  But pre-
sumably the idea is that there is some group of observations that were recorded “pretty much at the same 
time and under the same conditions” but that we only have a few of those observations available to use. 

 

2.  Calculations on a subgroup 
 

If you want to move straight on to finding out how to construct control charts for subgrouped data (with-
out bothering to find out why the details are what they are), you are welcome to skip this section for now 
and move straight on to Section 3 (page 20).  However, if later you decide to embark upon Part D: the 
“crash-course in conventional Statistics!”, you will need to read some of this section at that time. 

 
For illustration, here is a subgroup of size 5: 
 

1.4   1.2   2.1   1.8   1.2 
 

Note that there’s no reason why two or more values in the data shouldn’t be equal to each other (depend-
ing on the precision being used, one place of decimals in this case) as has happened here with 1.2.   

 
In the literature it is common to refer to individual values in the subgroup by the letter X and to the size of 
the subgroup by n, so that here n = 5.  When used with control charts, n is usually no larger than this. 
 
As in the main text of Days 2 and 3, one of the first things we think of doing with a set of numbers such as 
these is to calculate their average.  Now, although the way that we have previously computed an average 
(i.e. add up the numbers and then divide that total by how many numbers there are) is by far the most com-
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mon method, it isn’t the only way used by statisticians.  For example, an alternative approach is introduced 
on page 84 in the Technical Section along with a little discussion on why that alternative might be prefer-
able in some contexts.  So, to avoid ambiguity, statisticians normally use a different term to refer to the 
type of average with which everybody is familiar:  this is the mean or (to give it its full name) the arithmetic 
mean.  Therefore, with this terminology, we can now say that the mean of our subgroup is  
 

X!  =  (1.4 + 1.2 + 2.1 + 1.8 + 1.2)  ÷  5  =  7.7 ÷  5  =  1.54  
 
since X!  is the notation specifically reserved by statisticians for “the mean of the values being represented  
by X”.  The notation X!  (“X-bar”) isn’t used for any other type of average. 
 
Also as previously, we are likely to be interested in some way of measuring the variation of the numbers in 
our subgroup.  On Day 3 we became familiar with the idea of using moving ranges for this purpose because 
we were then focused on examining the way the data varied over time.  But, in a subgroup, we are now 
dealing with numbers “recorded pretty much at the same time”: so moving ranges are irrelevant in this 
context.  This inevitably brings us back to the conventional statistician’s favourite measure of variation, 
namely the standard deviation.  This has occasionally been mentioned in the main text, notably at the bot-
tom of Day 3 page 13 (which it would be useful for you to briefly refer back to), although it has never actu-
ally been defined previously—and now you’ll soon be discovering why! 
 
The definition starts out sensibly enough.  The general idea is that, roughly speaking, the standard devia-
tion indicates the typical size of gap between the n values of X and their mean X!.  This is a perfectly reason-
able approach to measuring the variation in a subgroup: the larger the gaps, the larger the variation; and 
the smaller the gaps, the smaller the variation.  The trouble is that statisticians do not tackle this “perfectly 
reasonable approach” in what many people would consider to be a “perfectly reasonable” way! 
 
Let’s be sure about what I mean by “gaps” here: they are the distances between the individual numbers 
and the mean.  So check that, with our subgroup, the gaps are, in turn, 0.14, 0.34, 0.56, 0.26 and 0.34.  
(0.14 is the distance between 1.4 and the mean 1.54, 0.34 is the distance between 1.2 and 1.54, and so 
on.)  Note that I am carefully avoiding the use of words like “difference” or “deviation” since those words 
are generally understood to mean the value of X –X!.  The latter is, of course, a negative value if X is smaller 
than X!  whereas gaps or distances are understood to always be positive (or zero).  So the differences or 
deviations are –0.14, –0.34, 0.56, 0.26 and –0.34 respectively whereas the gaps are as listed above. 
 
Now, surely the obvious way to get a measure of the variation in the subgroup would be to simply calculate 
the average (mean) gap or distance.  That’s to say: 
 

(0.14 + 0.34 + 0.56 + 0.26 + 0.34)  ÷  5  =  1.64 ÷  5  =  0.328 . 
 

You might immediately notice a very good reason why we’re using “gaps” or “distances” in preference to 
“differences” or “deviations”: if we were to include the latter’s minus signs then their sum would be zero— 
as would be the case with any set of data.  Try it for yourself if you don’t believe me! 

 
This measure (using gaps) is occasionally seen in the literature, glorying in the name Mean Absolute Devi-
ation—or MAD for short!  (In Mathematics, the effect of the word “Absolute” is to get rid of those minus 
signs.)  However, the experts rarely use the MAD.  Instead, the traditional and almost universal method is to 
 

(a) square the gaps (or the deviations or differences since squaring them gets rid of all minus signs!),  
(b) add up the resulting “squared gaps”,   
(c) divide that sum of the “squared gaps” by n – 1, and finally   
(d) take the square root of the result. 
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And there you have the long-awaited definition of the standard deviation of a sample (or subgroup).  Now 
you can probably appreciate why I have avoided showing it to you previously! 
 
Before I discuss it and try to give it some rhyme and reason, let’s go through the arithmetic with our illustra-
tive subgroup, just to make sure of what’s involved.  I’ll lay it out in those same four steps: if you wish, 
check it with your calculator. 
 

(a) 0.142 = 0.0196,  0.342 = 0.1156,  0.562 = 0.3136,  0.262 = 0.0676,  0.342 = 0.1156;  
(b) Adding up the above gives 0.6320;  
(c) n – 1 = 5 – 1 = 4, so dividing 0.632 by 4 gives 0.158;  and   
(d) the square root of 0.158 = 0.158  = 0.397 . 
 

For a long while I couldn’t understand why this method was in common use!  Sure, the standard deviation 
is some kind of way of producing something like an average or typical gap: but why so complicated and 
why do Mathematical Statisticians prefer it to the MAD?  And why on Earth divide by n – 1 in Step (c) rather 
than the more obvious n?  The answers eventually became clear to me as I learned more about Mathe-
matical Statistics theory.   
 
The answer to the first pair of questions is that, quite simply, despite being easier and quicker for you and 
me to calculate, the MAD turns out to be very awkward to use in algebra and other mathematical deriva-
tions, whereas it is much easier to develop nice mathematics with the standard deviation.  As a matter of 
fact, nice mathematics is even easier to carry out without even bothering with Step (d), i.e. not bothering to 
take the square root of the result in Step (c).  The result in Step (c) is called the variance and, if you turn the 
pages of any Mathematical Statistics textbook, you will actually find the variance being mentioned far more 
often than the standard deviation. 
 
Years later, when I first came across the Taguchi Loss Function (studied on Day 7), I found rather more jus-
tification for concentrating on the variance than purely mathematical convenience.  What we learn with the 
Taguchi Loss Function is that the square of the gap between a figure and its middle or optimum value actu-
ally has greater practical significance than the straightforward gap.  So I, at least, became rather more 
comfortable than previously about concentrating on variances (using squares of gaps) rather than on just 
the straightforward gaps themselves.  However, I feel pretty sure that convenience for the Mathematical 
Statisticians is the more likely main reason for the common use of the variance rather than the MAD! 
 
Actually, the good news is that, for the purpose of constructing and using control charts for a-few-at-a-time 
data, i.e. using subgroups rather than one-at-a-time data, you don’t need to know the answers to those 
questions I’ve just raised!  So why have I bothered to mention standard deviations at all?  The reason is 
that some of the details used in constructing these and other types of control charts do involve the stan-
dard deviation (or variance) in the background theory.  If you are content to simply accept the details that 
I tell you as being the truth rather than knowing anything about that background, then fine!  Much of the 
content in this optional material is not essential for you to know: I’m simply providing it for those who are 
curious about such things.  So you are most welcome to pick and choose what you bother with.  But, in 
particular, for your benefit if you are not really mathematically inclined, questions which need answers here 
in terms of anything at all substantial in terms of Mathematics have been postponed to the final (Technical) 
section—therefore that section is even more optional than the rest of these Optional Extras! 
 
There is still more good news to come!  The almost universally accepted way of computing control limits for 
control charts based on a-few-at-a-time data, i.e. data which come to us in subgroups, doesn’t involve our 
computing either the standard deviation or the MAD!  Instead it uses something much quicker and easier 
than either of them, namely the range of the subgroup.  The range of a subgroup is simply defined as the 
highest value in the subgroup minus the lowest value in the subgroup.  One typically computes control 
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limits using data from somewhere between, say, 8 and 15 subgroups.  So, even if you have a scientific cal-
culator which has the standard deviation programmed in, you’d still be doing lots more button-pressing in 
order to evaluate it than you’d need in order to compute the ranges of those subgroups.  Indeed, depend-
ing on the precision of the data being recorded, you might well be able to write down the ranges without 
using a calculator at all.  But you will still need a calculator to produce the control limits themselves. 
 
However, as mentioned earlier, the theory underlying where we place the control limits relates to standard 
deviations rather than to any other type of measure of variation.  Now, since the standard deviation is some 
kind of average or typical gap between the values in the data and their mean, it is obvious that the range 
(largest value minus smallest value) will be greater than the standard deviation.  We shall therefore need to 
divide it by some conversion factor to reduce it to a number which is on the same scale as the standard 
deviation—so that, in fact, it could then be regarded as an estimate of the standard deviation.  The conver-
sion factor involved is h, shown in the following table for subgroup sizes n = 2 to 6.  
 

 
n        2                 3                 4                 5                 6  

   h       1.128          1.693          2.059          2.326          2.534 
 
 
The technical details as to how this table is derived will be left (as you would expect!) to the Technical Sec-
tion (page 83).  With our illustrative subgroup of size 5, the largest and smallest values are respectively 2.1 
and 1.2, so that the range, which we’ll denote by R, is 2.1 – 1.2 = 0.9.  With n = 5, the converted value of R 
(converted in order to make its value comparable with the standard deviation) is thus 0.9 ÷ 2.326 = 0.387. 
The actual standard deviation of this subgroup was found on page 19 to be 0.397.  Of course, we could not 
expect the converted R to be exactly equal to the standard deviation since it uses less detailed information 
about what’s in the subgroup.  In fact, what the conversion method does (under the conditions assumed in 
the theory of the method) is to produce values that are equal to the standard deviation “on the average”.   
 

You may recall that the value of the MAD for this subgroup was noticeably less than what the standard 
deviation turned out to be: 0.328 compared with 0.397.  Interestingly, similar theory produces a conver-
sion method which requires the MAD to be multiplied by 1.253 in order to obtain a value comparable with 
the standard deviation.  This gives 0.328 ! 1.253 = 0.411—which is again (of course) not equal to the stan-
dard deviation but is nevertheless considerably closer to it. 

 

3.  Control charts for subgrouped data 
 
Most of the time in the previous section was spent on considering how to measure variation in subgrouped 
data.  In case you skipped that section, I’ll summarise it in just a single sentence as follows.  Although the 
underlying ideas about measuring variation are based on the standard deviation—the statistician’s favourite 
measure, as I have previously described it—practical work normally uses something much simpler: R, the 
subgroup’s range, i.e. the distance between the subgroup’s smallest and largest values.  
 
In this section we’ll introduce the type of control charts that are almost universally employed for studying 
subgrouped data.  There are other possibilities but, from the practical point of view, I do not think they are 
generally worth bothering with.  However, particularly because of using ranges, it will be necessary to con-
sult tables of so-called “control-chart constants” in order to compute the control limits.  Such control limits 
are in accord with Shewhart’s “3!-limits” as referenced by Dr Deming in his quotation reproduced on   
Appendix page 4.  (That is followed by some discussion which, in particular, indicates why Mathematical 
Statisticians tend not to like the method!)  As in the previous section, technical details about these control-
chart constants are contained in the Technical Section at the end of these Optional Extras.  Here we shall 
simply concentrate on how to use them. 
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With subgrouped data it is usual to construct not just one but two control charts, one for the subgroup 
means (the term introduced in the previous section for what we had previously simply referred to as the 
“average”): the  X

!
- chart,  and one for the subgroup ranges: the R - chart.  Thus we have one chart focused 

on whether or not the process average is stable and one chart focused on whether the amount of process 
variation is stable.  This second chart, specifically studying whether the variation in the subgrouped data 
over time is or is not stable, has now become possible because of having “a few” data available at each 
time-point rather than just one.  Since it is usual practice to deal with these charts as a pair rather than 
separately, they are sometimes referred to in the singular: the  X

!
- R  chart. 

 
Before covering the details, it would be useful to take a look at part of the rather famous hand-drawn  X

!
- R )

chart of which we have already seen something as the fifth of the “Six Processes” briefly mentioned on  
Day 3 page 21 and then described in some detail on Day 3 pages 32–33.  Since those pages were “effec-
tively ‘extra-curricular’”, I’ll repeat some of their content here.  On the next page there is a short portion of 
the chart which in 1982 some Ford Motor Company personnel brought back from the Tokai Rika Company 
in Japan (for, at that time, anything of this nature was totally new to them).  Something else that was wholly 
new to them was that such charts were being constructed, used and interpreted not by statistical “experts” 
but by the personnel on the factory floor.  The writing is not very clear, but you will be able to see the daily 
data in subgroups of size 4 written above the graph-paper and the very active notes and comments below 
the graph-paper with some translations written in.  The  X

!
- chart)is drawn in the top half of the graph-paper 

and the R - chart is at the bottom of the graph-paper.  You will also easily see, beginning on 27 October, 
clear signals below the Lower Control Limit on the  X

!
- chart )indicating that the process had suddenly gone 

out of control.  Also note the efforts made to find the reason and also that the control limits (on both parts 
of the chart) were accordingly recomputed.  It is also worth observing that, although it was the  X

!
- chart )

which had the signals,)the opportunity was also taken to update the R - chart since that also soon started 
getting points above its previous Upper Control Limit.  Although ancient, this Japanese Control Chart is 
extremely interesting to study, and an excellent presentation about it is provided in Chapter 7 of Under-
standing Statistical Process Control (Third Edition) by Don Wheeler and the late David Chambers. 

 
So let’s see how to construct an  X

!
- R  chart.  As with the control charts for single values in the main text, 

we will need to use data collected over a few time-points (the baseline).  There’s no “rule” governing how 
many time-points to use but I would suggest that, with n as large as 4 or 5, 10 would generally be ample.  
The Central Line of the  X

!
- chart  will naturally be the mean of the subgroup means, for which the traditional 

very logical notation is) X!
!
.   But how far above and below the Central Line should the control limits be?  The 

answer is a multiple of the mean range  R,
!

that multiple being H which is provided in the following table: 
 

 
n        2                 3                 4                 5                 6  

   H       1.880          1.023          0.729          0.577          0.483 
 
 
And how about the second of the pair of control charts, the R-chart, on which we plot subgroup ranges?  
Obviously enough, the Central Line here will be the mean range R! .   And, very conveniently, the control 
limits are also multiples of  R

!
—except that, strictly following Shewhart’s guidance on 3!-limits, there is no 

Lower Control Limit using small subgroup sizes!  Why might this be sensible?  Simply because, for small 
values of n such as in the brief table of control-chart constants that I have shown above, his guidance leads 
to negative values for the LCL: and, clearly, no range can be negative.  Interpreting this in practice, this 
implies that there are some circumstances in which it is quite possible for a zero subgroup range to occur: 
i.e. all the values in the subgroup happen to be equal to each other—whether or not the process is in statis-
tical control.  Clearly, this depends on the amount of precision with which the data-values are being 
recorded.  But the fact that such circumstances do exist in practice surely implies that it would be rather 
inconvenient if a zero range always had to be below the Lower Control Limit; so the fact that Shewhart’s 
guidance doesn’t provide one is not so peculiar after all—indeed, it’s rather fortunate! 
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The tables and notation being included here are extracts from the table of control-chart constants on page 
46 of EST, my book of Elementary Statistics Tables.  Those tables cover a wider variety of situations than 
the most common ones that I am including here, including subgroup sizes larger than n = 6.  And then 
Lower Control Limits can and do exist.  Using the notation in that EST table, the constants to be used for 
the Lower and Upper Control Limits on the R-chart are denoted h1 and h2.  So all that concerns us here is 
that the Upper Control Limit on the R-chart is computed as h2R

!
 where h2 is provided in the following table: 

 
 

n        2                 3                 4                 5                 6 
 

   h2       3.267          2.575          2.282          2.114          2.004 
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To put a little flesh on the bones, it would be a good idea for you to compute these various control limits 
and see them in action.  The easiest way to do that is to use some data from that piece of the Japanese 
Control Chart reproduced on the previous page.  It would therefore be useful for you to know a little more 
about some of the background to this chart and also to this particular part of it.  So below I have repro-
duced some short extracts from Don Wheeler’s write-up.  There is plenty to learn from these extracts, not 
only about the use of the control chart but also about the management and working environment—they are 
not unrelated!  As you can see, the part of the chart being illustrated begins on Monday 22 September 
1980 and runs through to Friday 14 November, and that is the period covered by the description below.  
I won’t repeat here any of the details already mentioned on page 21, so you might like to remind yourself of 
what I wrote there before moving on to the following extracts. 

 
“As the Ford group was touring the Tokai Rika plant, they observed eight production workers ‘en-
gaged in active discussion’ around this Average and Range Chart.  To the people from Ford, it 
seemed that something must be wrong with the process represented by the chart, so they asked 
about it.  They expected there to be an internal production problem, or an assembly plant problem, 
or a problem of too many rejects.  However, they were told that this was simply a routine review of 
an ongoing process and, in fact, the process was currently being operated predictably and was well 
within the specifications.  [In case you know about such things, the Process Capability Index was measured 
as about 2.25, indicating that virtually everything being produced was within the middle half of the specifica-
tion range and that the process’s performance was even superior to so-called six-sigma quality.  Not bad for 
1980!] 
 The process represented by this chart is the fabrication of a cigar 
lighter shell.  The dimension tracked by the chart is the distance between 
the flange and the detent, as shown.  The target value for this dimension is 
15.90 mm, and the specified tolerance is ±0.10mm.  The measurements 
shown on the chart were made with a snap gauge and were recorded to 
the nearest 0.01 mm.  Based on production data given later, about 17,000 
pieces were being produced each day. 
 Points outside the limits are noted on September 25 and 26, 1980.  Having noted that 
exceptional variation was present, they looked for the Assignable [Special] Cause.  The notes at the 
bottom of the chart document these efforts.  ‘Abrasion on the positioning collar’ is identified as the 
Assignable Cause for the process excursion noted in late September, 1980.  In addition to writing 
down the Assignable Cause on the chart they took action—the very next day the process average 
shifted back to the target of 15.90 mm.  Again, a note on the chart tells what was done. 
 As a temporary solution, a worker turned the worn collar over to use the back side.  Two 
days later a new collar was installed.  This incident displays a desire on the part of the Tokai Rika 
personnel to operate at the target.  The process was in no danger of producing nonconforming 
product, yet they took the trouble to fix it so that it would stay centred on the target value of 15.90 

mm.  Moreover, just as the shift on September 29 shows the desire of the workers to operate at the 
target value, the replacement of the collar on October 1 shows the support of the management for 
this policy. 
 Why do the operators and their supervisors want to operate right at the target value when 
they have such [relatively] wide specifications?  Isn’t this excessive?  Would it not be cheaper to let 
the process run until the process average was above 15.95 mm?  While it might be cheaper for this 
one operation, it would eventually prove to be more expensive for the company.  The definition of 
World Class Quality is ‘On Target with Minimum Variance’.  This example shows how this concept 
is put into practice.  [Don then continues with some discussion involving the Taguchi Loss Function, studied 
on Day 7 of our course.  The following two paragraphs now cover October 1980, and I’ll then ask you to com-
pute the control limits used on the chart during October.]   

 Following the installation of the new collar on October 1, data were collected for recalculat-
ing the limits.  The process stayed within these new limits until October 27.  At that time the product 



!"#$%&'#()#$*+,-.##/##01(,)-%2#34(5%'#

!"#$%&'()*+#,'-)).))"'/0)!")

dimension suddenly shifted downward.  The fact that it was a sudden change in the process was a 
clue to the nature of the problem, and as such was noted at the bottom of the chart. 
 The search for the Assignable Cause led back to the preceding step, a blanking operation.  
When a problem was found, it was checked to see if it corresponded to the indications given by the 
process behaviour chart [control chart].  Since this problem involved the repair of a die, the fix was 
postponed until the weekend of November 15 and 16.” 

 
 
 
Now, returning to the chart on page 22, you will see the note at the top pointing out that the new control 
limits were computed after the 15 October subgroup had been recorded.  To save you from having to try to 
decipher the writing above the chart, here are the data that were used for the computation: 

 
 10/ 1 2 3 6 7 8 9 10 13 14 15 
 15.90 15.90 15.89 15.90 15.90 15.91 15.90 15.90 15.90 15.90 15.90 
 15.90 15.91 15.90 15.91 15.90 15.90 15.91 15.90 15.90 15.90 15.90 
 15.90 15.90 15.90 15.90 15.91 15.91 15.90 15.90 15.91 15.90 15.90 
 15.91 15.90 15.91 15.91 15.89 15.90 15.90 15.90 15.90 15.90 15.90 

X!  
           

R            

 
So, go ahead and write down the values of X! )and R for each subgroup—not very difficult with these data!  
And yes, you will soon see a few of those zero ranges that I mentioned on page 21.  Next compute the 
values of X!

!
)and R! .   Finally, compute the control limits for both parts of the chart as described earlier and 

check that they agree (approximately) with what the Japanese workers had drawn as reproduced here on 
page 22.  My answers are on page 27 if you need them—but first try it yourself here:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As you have seen on page 22, all remained well until the out-of-control signals which began on 27 October.  
You have read at the top of this page what then happened.  After the repair had been carried out during the 
weekend of 15–16 November and some subsequent data had been collected, new control limits were 
drawn on the chart from 17 November onward.  Meanwhile, someone had checked through the data from 
27 October to 14 November and had computed control limits for that period using that whole set of data.  If 
you would like to try out the computations one more time, here are the data recorded over that period 
(I don’t know the reasons for the apparent six-day week followed by a three-day week): 

#67*#5*'(#)8#(7,'#1%.*#%-9#%22#)8#1%.*#":#%5*#%2')#)-#;)5<=))<#1%.*'#":">":?@##
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27 28 29 30 31 
11/ 1 4 5 6 10 11 12 13 14 

 15.87 15.88 15.87 15.86 15.87 15.88 15.89 15.90 15.89 15.89 15.87 15.89 15.89 15.88 
 15.88 15.90 15.88 15.87 15.87 15.89 15.90 15.91 15.87 15.89 15.90 15.89 15.88 15.89 
 15.88 15.89 15.88 15.89 15.89 15.89 15.88 15.88 15.88 15.90 15.89 15.89 15.89 15.88 
 15.89 15.89 15.89 15.87 15.90 15.88 15.89 15.89 15.89 15.90 15.89 15.88 15.88 15.88 

X!  
              

R               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
If you’d like to examine this period by drawing the  X

!
- R chart on the graph-paper below, you will see that 

the process remained in control during this time, albeit with the lower mean and with increased variation.  
However, you will also see that, despite the problem that had been discovered, it is highly unlikely that   
any piece manufactured even during this period was anywhere near going outside the specifications of 
15.90 mm ±   0.10mm.  This is, of course, an illustration of the value of having improved the process well 
beyond the minimum that had appeared to be necessary: despite the current perturbation, everything pro-
duced still remained “fit for purpose” (as conformance to specifications is often described). 
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4.  Discussion 
 
One of the expressions that is in vogue these days is “doing more with less”.  What better illustration could 
there be of that aim than this Japanese Control Chart?  Firstly, only a tiny amount of data was used: just 
four readings out of around 17,000 units per day.  Secondly, although maybe the accuracy of the readings 
(to the nearest one-hundredth of a millimetre) might have been quite impressive over 35 years ago, never-
theless it may appear to be rather crude considering the variability of the measurements involved: they 
were usually only varying between, say, 15.87 mm and 15.93 mm, and often over an even narrower interval 
than that.  But just look at what putting those “rather crude” data on control charts still enabled the produc-
tion workers to learn and do! 
 
There is one aspect of the Japanese Control Chart that I must advise you not to copy unless you already 
have really considerable knowledge and understanding of your process.  That was the way in which the 
subgroups were formed.  To quote from Wheeler and Chambers page 155, “The four pieces for the daily 
subgroup were drawn ... at 10.00 am, 11.00 am, 2.00 pm, and 4.00 pm”.  That is hardly consistent with my 
introductory remarks about subgroups on page 17:  “ ... the data concerned are recorded pretty much at 
the same time and under the same conditions”!  Immediately following that quotation about when the read-
ings were taken, there is some discussion on this very point.  Translating some of the Japanese writing 
under the chart for August 1980, the Japanese already had evidence that this schedule for recording the 
data was such that “the present measurement method can detect process change”.  The discussion then 
continued with these wise words: 
 

“As long as a process behaviour chart [control chart] is capable of detecting exceptional variation, it 
is sensitive enough to use ... .  There is no need to increase sensitivity by increasing subgroup size.  
Furthermore, one subgroup per day had proven to be adequate since this process was one that 
usually would change slowly, over a period of days.  For these reasons, the subgroup size and the 
subgroup frequency were not changed.” 
 

But let me repeat my above warning:  “I must advise you not to copy [such a method of data-collection] unless 
you already have really considerable knowledge and understanding of your process.”  I learned that lesson 
from an incident which occurred some time before I had even met Dr Deming.  Since this happened well 
over 30 years ago, I cannot recall all the details, but I can recall what was most important.  I was visiting a 
plant that was manufacturing long rolls of some rubbery material which was being used in a paper-manu-
facturing process.  The people there had become puzzled because both their  X

!
- chart  and R - chart were 

showing extraordinary “hugging the Central Line” effects—much more extreme than you saw when study-
ing the control charts for Rule 2 of the Funnel on page 10 of these Optional Extras.  The reason became 
clear when I asked them how they were forming their subgroups.  They told me that they were measuring 
the thickness of the material at both edges, and in the middle of the roll, and then halfway in-between those 
measurements, producing subgroups of size n = 5.  Unfortunately, when I examined the data, it turned out 
that there was a relatively substantial difference between the thickness of the roll at its edges compared 
with most of the material away from the edges!  That difference far exceeded the natural variation at any 
one of the five positions, and so resulted in the range of any such five measurements being vastly greater 
than what would have been obtained from the natural variation alone.  You can soon visualise the effect 
that that had on the control limits on both parts of their  X

!
- R )chart.  Those good people would have been 

far better off by just taking single measurements either at an edge or in the middle and using the ordinary 
one-at-a-time chart!   
 
My purpose in introducing you to the Japanese Control Chart has been twofold.  Firstly, of course, it con-
tains very suitable data for you to practise with, both on the computations and with the interpretations.  But 
secondly, I hope the short extract you have seen here will have whetted your appetite for seeing more of it! 
 



!"#$%&'%()*+,)"$)")$-.+%/"$"%

!"#$%&'()*+#,'-)).))"'/0)!")

I have already mentioned the superb coverage of the Japanese Control Chart in the book by Don Wheeler 
and David Chambers cited on page 21.  The whole 20-month chart is contained (in sections) within that 
chapter along with excellent discussion.  Further, a slightly updated version of Don’s original video of         
A Japanese Control Chart is also available from SPC Press (www.spcpress.com), either by download or on 
DVD.  I particularly recommend the book if you are interested in learning much more on control charts than 
I have included either in these Optional Extras or in the main course.  It is quite expensive, but the whole 
book contains extremely interesting and useful material.  If you have a local library, see if they can find it for 
you! 
 
Computed control limits  
 
With the data on page 24 [WB 250] the control limits for the  X

!
- chart  are at 15.895 mm and 15.908 mm, while 

the (upper) limit on the R - chart is at 0.0207 mm. 
 
With the data on page 25 [WB 251] the control limits for the  X

!
- chart  are at 15.871 mm and 15.899 mm, while 

the (upper) limit on the R - chart is at 0.0440 mm. 
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PART C:  NE’ER THE TWAIN SHALL MEET? 
 

1.  Introduction 
 

Well, the twain may meet—but there’s often a serious problem when they do: neither can understand what 
the other is talking about!  The “twain” to whom I am referring are students from what we might call the 
Deming/Shewhart school of Statistics on the one hand and from the “conventional” or “traditional” or 
“mathematical” school of Statistics on the other.  As I said as early as Day 1 page 6, and repeated here in 
the Introduction on page 2: 
 

“Over the nearly 20 years of my seminars on Dr Deming’s teaching I rarely suffered from any ‘diffi-
cult’ delegates.  The few that I had could be divided into two types.  One type were very senior 
managers;  the other type were those with some qualification in Statistics.” 
 

On page 2 I then pointed out that 
 

 “... the latter were often the more difficult type.  That may sound rather flippant, but it isn’t.  It can 
be very serious.  If it happens to you then I want to help you to deal with it.  For you may not have 
any qualification in Statistics.  So are the people in your organisation likely to believe you or the one 
who is qualified in the subject?”. 

 
For example, the “conventional” student has been taught that both the theory and “validity” of control 
charts depend upon traditional Mathematical Statistical fodder such as probability theory, the normal distri-
bution, the Central Limit Theorem, and hypothesis testing.  The Deming/Shewhart student may never even 
have heard of such things because, truth to tell, neither the “validity” nor even the basic ideas behind con-
trol-chart methodology depend on any of them—at least, that is, according to both Dr Walter Shewhart 
(who, as you know, was the subject’s creator) and his famous protégé, Dr W Edwards Deming (and, by 
now, you know quite a lot about him as well!).  I’d say they were both fairly safe sources of wisdom.  How-
ever, if you are interested in what those things are about, you will find some explanation and discussion on 
them in Part D of these Optional Extras—and that will be useful if you ever become one of the twain that do 
meet!  Why?  Well, let’s see. 
 
You, the Deming/Shewhart student, might well like to convince the conventional Statistics student that 
those supposed mathematical underpinnings are irrelevant.  But how can you, if you know not what they 
are, let alone why the conventional student deems them to be so essential?  Yet you almost certainly need 
to be able to communicate such arguments, else your organisation will continue to be held back by mis-
conceptions taught to them by the statistical “expert”, misconceptions that are very likely to result in over-
restrictive use of control charts and often fear of their use.  As Dr Deming pointedly expressed it (Out of the 
Crisis page 286[335]), the mathematical concepts mentioned above “are misleading and derail effective 
study and use of control charts”.  I most certainly could not have expressed it better myself. 
 
So some of the material that follows attempts to enable you (a) to understand how the conventional sta-
tistician thinks, and why he thinks that way, and (b) to thus be able to communicate with him, and then 
(c) to have at least a sporting chance of helping him see the error of his ways.    
 
One big problem that exists between the two schools is that there are likely to be incompatibilities of per-
ceived purpose, and therefore of use and interpretation, of control charts.  The Deming/Shewhart student 
recognises control charts as a valuable guide to appropriate action for improvement.  The conventional stu-
dent usually regards them merely as a monitoring device to provide an early warning of something going 
wrong, so as to trigger timely corrective action.  But that is not improvement—it is, at best, maintenance of 
the status quo.  
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That is clearly a matter touching upon the very management philosophy and approach of the organisation 
in which the control charts are being used—thus it is strongly related to the main material of this course.  
The concentration here in this optional material is largely restricted to merely technical issues.  But stu-
dents from the two schools often find that, even on technical matters, they still cannot understand each 
other. 
 
The clear rejection by both Shewhart and Deming of the relevance of the conventional statistician’s “life-
blood” of probability calculations and normal distributions in this context have already been evidenced by 
quotations from both of them that you have seen in the main text.  But they surely bear repeating here.  
 
Firstly, there was the extract from Out of the Crisis page 286[pages 334–335] that I have just mentioned, 
and I make no apology for repeating part of the final sentence: 
 

“It would ... be wrong to attach any particular figure to the probability that a statistical signal for 
detection of a special cause could be wrong, or that the chart could fail to send a signal when a 
special cause exists.  The reason is that no process, except in artificial demonstrations by use of 
random numbers, is steady, unwavering. 
 It is true that some books on the statistical control of quality and many training manuals for 
teaching control charts show a graph of the normal curve and proportions of area thereunder.  
Such tables and charts are misleading and derail effective study and use of control charts.” 
 

Then there was this extract from page 12 of Shewhart’s 1939 book: 
 

“Some of the earliest attempts to characterise a state of statistical control were inspired by the 
belief that there existed a special form of frequency function !!!and it was early argued that the nor-
mal law characterised such a state.  When the normal law was found to be inadequate, then gener-
alised functional forms were tried.  Today, however, all hopes of finding a unique functional form ! 
are blasted.” 
 

And finally there was this passionate language from Deming when he was speaking to some senior execu-
tives in France in 1989 (recorded in Profound Knowledge, BDA Booklet A6 page 4 and recently already 
mentioned here on page 20 of these Optional Extras): 
 

“How can we aim for minimum economic loss?  It is nothing to do with probabilities of the two 
kinds of mistakes.  No, no, no, no: not at all.  What we need is an operational definition of when to 
look for a special cause, and when not to.  That is, a rule which guides us when to search in order 
to identify and remove a special cause, and when not to.  It is not a matter of probability.  It is noth-
ing at all to do with how many errors we make on average in 500 trials or 1,000 trials.  No, no, no—
it can’t be done that way.  We need an operational definition of when to act, and which way to act.  
Shewhart provided us with a communicable operational definition: the control chart using 3!-limits.  
Shewhart contrived and published the rules in 1924—65 years ago.  Nobody has done a better job 
since.” 
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2.  The essence of the argument 
 

Two types of “statistical studies” 
 
Assuming you do not have much or any background in conventional Statistics, this section will (like the first 
section) contain some words, terms and phrases with which you are not familiar.  But please read it none-
theless!  My purpose here is to provide a broad introductory description of all of the rest of this optional 
extra material so that you can get an advance sense of the shape of things to come.  This includes (on 
page 33) a typical syllabus for an introductory course on conventional Statistics which obviously will indeed 
include some terms with which you are unfamiliar.  But, after reading these current two pages, you will 
have a good idea of why I am introducing them to you.  They are mostly “part and parcel” of what the con-
ventional statistician is familiar with, and so then you will have a chance of discussing things with him.  That 
will be even more the case if you undertake the “crash-course in conventional Statistics!” that I offer you in 
Part D. 
 
But even the conventional statistician will probably not be familiar with some or all of what I shall now intro-
duce—so you’re on a level playing-field for the time being!  At least, that was my experience with what 
follows.  Maybe a couple of years before I first met Dr Deming, I tried to read some of what he had written 
about the subject of Statistics.  And almost immediately I was faced with terms such as “analytic studies”, 
“enumerative studies” and “frames”.  All totally new to me. 
 
Now, at that time, I had already been a Lecturer in Statistics in the University of Nottingham’s Department 
of Mathematics for over 15 years.  So I suppose I had already become somewhat set in my ways and in my 
understanding.  For it seemed from what I was reading that Deming was claiming all I had so far learned 
and had therefore so far been teaching others, was “merely” concerned with “enumerative” studies—
whereas what was really needed in order to be useful in the real world was “analytic” studies.  Surely that 
couldn’t be right, could it?   
 
But a lot of other stuff that Deming had written did appeal to me, so I rather set aside that business about 
the two types of statistical studies and read about other things instead.  Nevertheless, some time later 
when the British Deming Association began its work, one of the first things I did was to set up a study 
group to examine Deming’s writings about Statistics to see if that group could shed some light on those 
puzzling matters.  I was extremely fortunate to have the late Professor David Kerridge as leader of that 
study group, and light eventually began to dawn under his patient and wise guidance.  David became a 
great supporter and helper and friend in the years that followed. 
 
Again assuming that you do not have much background in conventional Statistics, you probably won’t have 
the mental blocks that I had and will therefore be able to get the gist of what Deming was writing about 
much more quickly than I did.   
 
What do dictionaries tell us about those puzzling words?  Actually, I discovered that neither dictionaries on 
the internet nor in print seem very helpful with the adjective “enumerative”.  All I could find was either the 
noun “enumeration” or the verb “enumerate” with “enumerative adj” then appearing merely as an append-
age without definition.  The verb “enumerate” is typically described as “To count off or name one by one; 
list” and the noun “enumeration” as “The act of enumerating” or “A detailed list of items”.  Is that really all I 
had been teaching all those years?! 
 
Maybe I’d have better luck with “analytic”.  A well-known dictionary on the internet produces:  “Generally 
speaking, ‘analytic’ refers to ‘having the ability to analyse’ or ‘division into elements or principles’.”  OK: 
maybe that makes a bit of sense.  How about my favourite hard-copy dictionary—what did I find there?  
“Of, pertaining to, or based on analysis; showing an ability to analyse and reason from a perception of the 
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parts and interrelationships of a subject; skilled in analysis.”  Hmm, I found a glimmering there, but not       
a lot. 
 
How about “enumerative study” or “analytic study”?  No: I drew a blank on both of those.  
 
So I’d better try some brief explanations in my own words!  “Analytic studies” are indeed what we have 
been involved with, particularly in the early days of 12 Days to Deming, primarily enabled by the use of con-
trol charts.  Let me try a description in just a single sentence:  The purpose of analytic studies is to enhance 
knowledge and understanding of processes, for prediction into the future, and to provide guidance for 
improvement.  You will observe that we could just as well replace “analytic studies” by “control charts” in 
that sentence.  Looking back to the early years of my career-life, I must indeed confess that that sentence 
does not describe what I was then teaching.  I had actually come across a version of control charts in a 
textbook quite early on while teaching in America, and thought the topic interesting enough to devote, say, 
half of a 50-minute lecture to it in the introductory Statistics course that I gave back here in the UK, but       
I certainly cannot claim that that sentence describes what I taught during those few minutes.  (No, I shall 
not embarrass myself by describing to you what I did cover in them!) 
 
How about a brief explanation of “enumerative studies” in my own words?  As we shall see later, an intro-
ductory course on conventional Statistics often begins by talking about drawing a sample (or preferably a 
“random sample”) from a “population”.  A “population” is some collection of “things”—possibly people but 
often not.  In the Red Beads Experiment, the population is a collection of 4,000 beads.  A “sample” from 
the population is, of course, a selection of some of those “things” from the population—we are familiar with 
samples consisting of 50 beads obtained using the “paddle”.  If the term “random sample” is used, what 
does that imply?  It actually implies something very specific: namely, that each and every possible sample 
(of the specified size) is equally likely to be drawn as any other.  Using the sample, the output from an 
“enumerative study” is then an attempted description of what is in that population—or, rather, in that part 
of the population which is available for sampling, and that’s what Deming meant by the word “frame”.        
A census is a good example of an enumerative study using an extremely large (though not random) sample. 
 
Note that simply attempting to describe what is in the population (or frame) does not include any intent to 
explain why the population (frame) contains what it does nor what anything related to it might become or 
deliver in the future.  As Deming would say, it contains no “temporal spread”.  So, in an enumerative study, 
there is no reason to consider matters such as whether or not a state of statistical control exists—indeed, 
the times at which the data are taken are often not even noted—whereas, of course, that is top priority in 
analytic studies.  As I understand it, this is the essential difference between those two types of statistical 
studies—and, as I believe you will appreciate, that’s a big difference.  There may well be more, but at least 
I hope this will give you a reasonable start if you ever do decide to delve into such matters. 
 
If books and courses on Statistics were to make clear—maybe not using the same terms, but at least indi-
cating the purpose and limitations—that what they include is designed only for enumerative rather than for 
analytic studies, presumably they would not do much harm.  However, if one looks at the examples illus-
trated in, say, chapters on histograms in introductory Statistics texts, even in the more “practical” ones, it is 
often the case that they are actually involved not with “populations” but with processes, i.e. with their data 
being generated over time and with a strong likelihood that time-dependence is important.  Thus, not only 
are the purpose and limitations of enumerative studies not made clear—it would appear that they are not 
even recognised by many authors and teachers. 

 
A typical syllabus for an introductory Statistics course 

 
To help you understand something of the conventional statistician’s mindset, Part D of these Optional 
Extras will introduce you to some content of a typical introductory Statistics course.  But, to prepare you 
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for that pleasure, here is a possible syllabus for such a course.  Again it will, of course, contain some terms 
that are unfamiliar to you—but then that is likely to be true of a syllabus for a course on any topic with 
which you are not already familiar. 

 
• Summarising “raw data” through pictures such as histograms and the calculation of “sample sta-

tistics” such as the sample mean X! )and the sample standard deviation s and/or the sample vari-
ance s2 [a “sample statistic” is anything which can be computed from the data in the sample]. 

 
• Probability, particularly as the long-term proportion of occurrences of an event and using symmetry 

considerations (as with coins, dice and playing cards). 
 

• The natural link between the above two topics, i.e. that if one takes an ever-larger random sample 
from a population then the corresponding histogram (appropriately scaled) gets ever-closer to a 
similar pictorial representation of the probabilities of the possible outcomes—thus leading to the 
ideas of the “true mean” µ and the “true standard deviation” ! of a probability distribution being 
respectively the long-term values of X! )and s as the sample size n !)1)(“tends to infinity”). 

 
• Discrete and continuous probability distributions: particularly the binomial and normal distribution 

respectively. 
 

• Properties of the normal distribution, including the Central Limit Theorem. 
 

• Statistical inference: in particular, confidence intervals and hypothesis tests (tests of significance), 
and how assumptions of normality and/or the use of the Central Limit Theorem enable these to be 
placed on an appealing mathematical footing. 

 
There: that’s going to be fun, isn’t it? 

 
The conventional statistician’s view of control charts, ... 
 
Here is an abbreviated version of Deming’s second quotation on page 30: 

 
“How can we aim for minimum economic loss?  It is nothing to do with probabilities of the two 
kinds of mistakes.  No, no, no, no: not at all.  ...  It is not a matter of probability.  It is nothing at all 
to do with how many errors we make on average in 500 trials or 1,000 trials.  No, no, no—it can’t be 
done that way.” 
 

As you will see later, Deming was alluding here to the conventional statistician attempting to treat control 
charts as if they were hypothesis tests.  A hypothesis test results in the rejection or acceptance of a so-
called “null hypothesis” H0.  This decision is made according respectively to whether an appropriate sam-
ple statistic, the “test statistic”, lies inside or outside some region of values defined by one or two “critical 
values”: this region is therefore called the “critical region”.  Moreover, the “significance level” of the test is 
defined to be the probability of the test statistic wrongly rejecting H0, i.e. rejecting H0 (because its value falls 
inside the critical region) when H0 is in fact true.  So that’s the direct connection with what Deming was 
talking about above.  Assumptions about the data being normally distributed, or equivalently the Central 
Limit Theorem, allow particularly easy and convenient derivation of the critical value(s) for any desired signi-
ficance level. 
 
If the conventional statistician, trained in this way, subsequently comes across a control chart—by far the 
most important tool for an analytic study—it is rather easy to see why he is immediately inclined to regard it 
as a kind of glorified hypothesis test with H0 representing “in statistical control”, and why he thinks that nor-
mality has such an important part to play.  But, as we have seen, the traditional Statistics course such as 
that whose syllabus is summarised above is based upon foundations only pertaining to enumerative studies 
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—in particular, ignoring any questions about behaviour possibly changing over time.  (There are a few areas 
in conventional Statistics that study behaviour changing over time in some specified well-defined manner.  
But that’s a very different matter, and actually probabilities and the normal distribution again often domi-
nate the theory in such areas.)  The conventional statistician’s interpretation of a control chart as a glorified 
hypothesis test is thus wholly without foundation in practice.  As a matter of fact, even in enumerative stud-
ies, aspects of hypothesis testing stand on rather thin ice because, in most practical applications, H0 is 
never, or almost never, true!  So I’m rather glad that “in statistical control” is not an appropriate H0! 
 
The conventional statistician will hardly give a friendly hearing to the suggestion that the foundations upon 
which he has built his beliefs, career and reputation might be inappropriate in the “real world” as opposed 
to in the Mathematics classroom.  So, is there anything that can be done?  Yes, fortunately and remarkably, 
there is. 
 
But, before that, it is worth making the intriguing and salutary point that Shewhart himself started out think-
ing that the subject could be developed from the conventional Statistics viewpoint.  What is often referred 
to as “the very first control chart” (pictured below, dating from 1924) shows some guidelines placed at just 
one standard deviation either side of the Central Line, with the indication “68% p” written against them.  
That probability, expressed as a percentage, is derived from the normal distribution, as you will be able to 
confirm when you reach page 49. 

 
 
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 

 
Yet, despite this, Shewhart was open-minded enough to eventually see the error of this mode of thinking.  
His statement on page 30 (sandwiched between the two quotations from Dr Deming) was clearly autobio-
graphical!#
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... and what can be done about it 
 
Substantially, the conventional statistician’s case for requiring normality to make control charts and their 
control limits “valid” exists on two main fronts.  Such a statistician believes that normality is needed: 

 
• because control-chart constants that are used in computation of control limits, such as the 2.66 

with which we became familiar on Day 3, are derived from normal distribution theory (as indeed 
they are);  and 
 

• so that a probability interpretation can be given to control limits:  specifically, the claim is often 
made that, under normality, there is a probability of 0.0027 (i.e. 0.27%) that any particular data-
point falls outside Shewhart’s 3!-limits (note that 0.27% = 2 ! 0.135% when you look at page 49) if 
the process is in statistical control. 

 
Now again, any acceptance of Shewhart’s and Deming’s teachings immediately leads to the denial of the 
conventional statistician’s claims in both of these respects.  The “fortunate and remarkable” facts alluded to 
on the previous page are however that, even if we ignore what Shewhart and Deming said about both nor-
mality and probability interpretations (recall, in particular, page 30), the above claims are still demonstrably 
wrong!  In other words, we are able to wade right into the conventional statistician’s camp, onto ground 
which both Shewhart and Deming believed to be without foundation yet which the conventional statistician 
needs to have faith in (for all that he has learned is built upon it), and to talk to him in language which he 
both understands and accepts (even if we don’t), and to still produce evidence which disproves his beliefs!! 
 
That evidence is demonstrated in Part E on pages 65–70. 
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PART D:  A CRASH-COURSE IN CONVENTIONAL STATISTICS! 
 
Histograms and sample statistics 
 
We’re starting off on quite familiar ground, particularly if you have read Part B of these Optional Extras, and 
so this first section is very short.   
 
From the practical viewpoint, one could simply express the prime purpose of Statistics as being “data anal-
ysis”.  So let’s suppose we have available for analysis a random sample of data (in the sense described on 
page 17) taken from some “population” of values.  Alternatively, our data might consist of the results from 
repeated trials of some experiment, operation or procedure, etc.  What can the data tell us about that pop-
ulation or other source from which they’ve been drawn?  To get some idea about that, the first thing you 
might well do is to construct a histogram of those data, just as you have seen and done on Day 3.  You will 
see many more histograms in this crash-course. 
 
Secondly, the term “sample statistics” simply refers to any quantities that can be computed from the data.  
We have already discussed some sample statistics in the “Calculations on a subgroup” section in Part B 
(beginning on page 17) although I didn’t use that term there.  So again I need say very little here.  However, 
at the time I did give you the option of skipping that section.  If you accepted that option then I’m afraid 
I must now ask you to go back to it, for quite a lot that I would otherwise have had to include here is all 
there.  You won’t have to read the whole section, but you will need to read the first two pages: you can 
stop once you’ve read the paragraph in the middle of page 19 which introduces the “variance”. 

 
Probability 
 
The conventional statistician regards Probability as the branch of Mathematics on which the subject of Sta-
tistics is based. 
 
The idea of the probability of an event occurring in some particular situation is often described in terms of 
the long-term proportion of occurrences of that event, implying (conceptually at least) that it is possible to 
repeat the situation being envisaged under the same conditions ad infinitum.   
 

That is, of course, a far more exacting notion of stability than is considered in the control-charting context: 
and so, when necessary to avoid ambiguity, I shall refer to the situation now being described as that of 
“exact stability”. 

 
Many examples of probability calculations, both at the introductory stage and later, make use of considera-
tions of symmetry, which is where all the various possible outcomes are regarded as being equally likely to 
occur.  Common illustrations in the introductory texts are the two sides of a coin, the six faces of a die, and 
the 52 playing cards in a “well-shuffled” deck. 

 
Linking it all together 
 
Now comes a master-stroke in the introductory conventional Statistics course:  to combine the ideas pre-
sented above into a unified theory so as to create a basis of probability for results obtained from sampling. 
 
Let’s demonstrate by means of a very simple example:  the number of Heads obtained when two coins are 
tossed.  Assuming that the coins obey the mathematical ideal of an exactly 50–50 chance of Head or Tail 
every time they are tossed, it follows that, when both are tossed: 
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        Probability of no Heads  =    1
4  

        Probability of 1 Head and 1 Tail =     

1
2  

        Probability of 2 Heads  =    1
4  

 
A typical way of verifying this (if you need one) is as follows.  Suppose we label the coins as A and B.  Then 
there are four possible outcomes, all equally likely.  They are: 
 
               Coin A:           Head        Head         Tail         Tail 
               Coin B:           Head         Tail         Head        Tail 
 
In other words, each of these four possibilities occurs a quarter of the time in the long run, i.e. each one of 
the four possibilities has probability 

1
4 .   This easily translates into the above probabilities since the event 

“1 Head and 1 Tail” corresponds to two of the four equally-likely possibilities.  We can draw a picture of 
these three probabilities where, similarly to a histogram, heights or areas are proportional to the probabili-
ties: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that these three probabilities add up to 1, as of course is bound to be true in any situation when add-
ing up the probabilities of all possible mutually exclusive outcomes.  So, in terms of such a picture of prob-
abilities (whether the situation being described is simple like this or far more complex), the total area con-
tained in any such picture must be 1.   
 
Now suppose we toss the two coins several times, keeping track of how often we get no Heads, one Head, 
and two Heads.  Here are some typical results.  After tossing the coins ten times, we might have: 
 
     0 Heads:      3 times 
     1 Head:      6 times 
     2 Heads:      once 
 
Then, after 100 tosses, we could have: 
 
     0 Heads:    27 times 
     1 Head:    53 times 
     2 Heads:    20 times 
 
And after 1,000 tosses, the results might be: 
 
     0 Heads:  256 times 
     1 Head:  502 times 
     2 Heads:  242 times 
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Here are the histograms corresponding to those three sets of data (with vertical scales adjusted so that the 
pictures are comparable with each other): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
However, following what we just observed about the total area contained within pictures of probabilities, it 
is more useful to indicate the proportions of times each possibility occurred, as that will then immediately 
enable us to see approximations or estimates of the probabilities of the outcomes.  In the following pictures, 
the proportions are expressed in terms of decimals rather than fractions as that will make it easier to see 
what is happening numerically as well as pictorially.  Yet another advantage of using proportions is that we 
then have no need to worry about adjusting the vertical scales: the areas now automatically add up to 1. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Notice how, with sample size n = 10, the picture is noticeably different from the picture of probabilities on 
the previous page but that, by the time we reach n = 1,000, the shape has become very similar to that pic-
ture of probabilities.  So the histogram of the data gets closer and closer to the picture of the actual prob-
abilities as the amount of sampling increases.  This is no surprise: it is simply a natural consequence of 
considering probabilities as “long-term proportions of occurrences”. 
 
That link between the picture of the probabilities and the histograms as the amount of sampling increases 
has its parallel with the sample statistics.  Let’s consider the sample mean X! . ))Our sample of size 10 con-
sisted of 3 zeros, 6 ones and 1 two.  Clearly, adding up these ten numbers gives us 8, and so X! 1)8 ÷ 10 = 
0.8.  With the sample of size 100 we had 27 zeros, 53 ones and 20 twos.  Adding up these 100 numbers 
gives 93, and so X! )=))93 ÷ 100  =  0.93.  
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Before proceeding to the final case, let’s note something that will be important a little later.  This is that, in 
the two cases so far considered, the calculations can be written respectively as  
 

X!  =  0 ! 3
10  + 1 ! 6

10  +  2 ! 1
10   and  X!  =  0 ! 27

100  +  1 ! 53
100  +  2 ! 20

100 . 
 
You can easily verify that, in the final case, the 1,000 numbers add up to 986 but, for the moment, building 
on what I have just pointed out, let’s simply write X!  as    
 

X!  =  0 ! 

256
1000  +  1 ! 502

1000  +  2 ! 242
1000 . 

 
Probability distributions, particularly the binomial distribution 
 
Portrayal of the probabilities of all possible individual outcomes in the situation being considered, either as 
a picture like that on page 38 or just the numbers on which that picture is based, leads us to the idea of a 
probability distribution.  That coin-tossing case of  
 
        Probability of no Heads  =    1

4  

        Probability of 1 Head and 1 Tail =     

1
2  

        Probability of 2 Heads  =    1
4  

 
is a simple example of an important type of probability distribution known as the binomial distribution.  
Some other types of probability distributions are often included in an introductory course, glorying in such 
names as Poisson, geometric, hypergeometric, uniform, exponential and, as you already know, normal. 
 
The above link between probability distributions and histograms immediately raises the idea of a probability 
distribution having its own mean and standard deviation.  What we have seen is that, as the number of data 
represented in the histogram increases, that picture becomes more and more like the picture of the prob-
ability distribution.  Correspondingly, the probability distribution’s mean and standard deviation can be des-
cribed as the “long-term” values of the histogram’s mean and standard deviation as the sample size 
becomes ever-larger.  These “long-term” values of the mean and standard deviation are almost universally 
denoted respectively by the Greek letters µ (pronounced “mu”) and ! (you know how this one is pro-
nounced: “sigma”).  The mathematician talks of defining µ  and ! (and !2) as the limiting values of the histo-
gram’s mean and standard deviation (and variance) as the sample size tends to infinity, using the symbol-
ism:  

X!! µ)))as   n !)1)))and)
 

s !)!   (or equivalently s2 !)!2)  as   n !)1).  
 

Such symbolism often looks pretty scary to newcomers but, as you can see, its purpose is simply to pro-
vide a mathematical “shorthand” to prevent mathematical derivations and proofs becoming inconveniently 
wordy and cumbersome. 
 
Let’s take another look at the calculations of the sample mean X! )at the end of the previous section.  You 
saw that we finished up writing them like this: 
 
) ) ) ) )))X!  =  0 ! 3

10     +  1 ! 6
10     +  2 ! 1

10     =  0.800 ,     
) ) ) ))))) )))X!  =  0 ! 27

100    +  1 ! 53
100    +  2 ! 20

100    =  0.930 ,  
) ) ) ) )))X!  =  0 ! 256

1000  +  1 ! 502
1000  +  2 ! 242

1000   =  0.986 . 
 
Can you see what’s happening?  We are multiplying each possible value by the proportion of times that it 
occurs.  But it is those very proportions that get closer and closer to the probabilities of those values occur-
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ring.  So imagine we toss the coins 10,000 times, 100,000 times, 1,000,000 times and so on.  Surely our 
calculation will get closer and closer to: 
 
) ) ) ) )))X!  =  0 ! 1

4  +  1 ! 1
2  +  2 ! 1

4   =  1, 
 
i.e. it’s the sum of the values multiplied by the probabilities that those values occur.  Ah, so to compute µ 
we don’t need to do all that sampling after all!  We can simply calculate it directly from the probabilities. 
 
Let’s develop the same theme to find the standard deviation ! or the variance !2 of this simple binomial dis-
tribution.  So now we want to find the long-term value of s or of s2 as n ! 1.  I suggest we copy the math-
ematicians here and focus on the variance:  it will avoid having square root signs all over the place.  We can 
compute the variance first and then simply take its square root to immediately get the standard deviation. 
 
If we think of this in terms of tossing the coins thousands or millions of times, it all looks rather messy!  E.g, 
suppose we look at the situation where we have the above results from tossing the two coins 1,000 times.  
Recall what s2 is: look back at Steps (b) and (c) of the four-step procedure on pages 18–19.  At that stage 
our value of X! )is 0.986, and so “the sum of the ‘squared gaps’” ÷ ( n – 1) would be:  
 

s2 = 1
999 (0 ! 0.986)2 " 256  +  (1! 0.986)2 " 502  +  (2 ! 0.986)2 " 242{ }  

or, if you like, 
 

s2 =  (0 ! 0.986)2 " 256
999   +  (1! 0.986)

2 " 502
999   +  (2 ! 0.986)

2 " 242
999 . 

 
No: I don’t intend to compute that unpleasant sum!  We don’t need to.  Let’s see what happens as n ! 1.  
First, as we saw above, X! gets closer and closer to the distribution’s mean, i.e. to µ = 1.  And, secondly, 
the fractions (the proportions of occurrences) get closer and closer to the probabilities.  So, in the limit (as 
the mathematicians would say), that unpleasant expression simply becomes: 
 

!2  =  (0 – 1)2 ! 
1
4   +  (1 – 1)2 ! 

1
2   +  (2 – 1)2 ! 

1
4 . 

 
That’s better—much easier arithmetic!  It simply boils down to !2 = 12 .   So then taking the square root gives 
us  ! = 1 ÷ 2   which is equal to 0.707. 
 
Finally for this section, let’s take a look at another example of a binomial distribution.  Incidentally, as you 
may have realised, “bi–nomial” implies “two names”.  A binomial distribution always concerns situations or 
experiments or trials, etc where the possible outcomes can simply be regarded as of just two types, let’s 
say S and F, and we are interested in the probabilities that S occurs x times (and F occurs the remaining    
n – x times) in n trials for all the possible values of x.  I’ve used S and F there because teachers often talk in 
terms of “Successes” and “Failures” in this context. 
 
Let’s suppose we throw three dice (or, what comes to the same thing) one die three times.  What is the 
probability of there being no sixes, or 1 six, or 2 sixes, or 3 sixes?  No need to bother with sampling and 
histograms now:  let’s head straight for the probabilities.  We are, of course, assuming that the dice are 
“fair” so that, in particular, the probability of a six occurring when a die is thrown is 

1
6 .  

 
Since each of the three dice produces a six with probability 

1
6 ,  the probability of all three dice showing a six 

is surely 
1
6  ! 

1
6  ! 

1
6  = 1

216 .   Almost as easily, the probability that no die finishes up as a six is 56  ! 
5
6  ! 

5
6  = 125216 .    

 
But what about the probability of there being exactly one six out of three?  Here it’s easier to think of one 
die being thrown three times.  There are three different ways of getting exactly one six:  either the first throw 
produces the six and the other two throws do not produce a six, or the single six occurs on the second 



!"#$%&'#()#$*+,-.##/##01(,)-%2#34(5%'#

!"#$%&'()*+#,'-)).))"'/0)!")

throw, or it occurs on the third throw.  Using the S and F notation, we could therefore have either SFF or 
FSF or FFS.  So, with the probability of S being 

1
6  and of F being 

5
6  and using the same kind of multiplication 

technique as above, the probability of SFF is 
1
6  ! 

5
6  ! 

5
6  = 25

216 .  The same result will be true of both FSF and 
of FFS since you’ll still be multiplying the same fractions together: they’ll just be in a different order.  Then 
the probability of there being exactly one six is therefore 3 ! 25

216  = 75
216 . 

 
Finally, what is the probability of there being exactly two sixes?  We could produce a similar argument as in 
the previous paragraph, but there is a neater way.  Since all the four probabilities (of 0, 1, 2 and 3 sixes) 
must add up to 1, the probability of two sixes is equal to (1 minus the three probabilities we have just com-
puted), i.e. 1 – 

1
216  – 

125
216  – 

75
216  = 15

216 .  Job done! 
 
So we have finished up with 
 
  Probability of 0 sixes  =  125216   Probability of 1 six      =  75

216   
  Probability of 2 sixes  =  15

216   Probability of 3 sixes   =  1
216 . 

)
For practice, you might like to verify that the mean µ of this binomial distribution is equal to 

1
2  and its vari-

ance !2 is equal to 
5
12  (and so, taking the square root, ! = 0.6455).  

 
A more organised way of dealing with all binomial distributions is presented in the Technical Section on 
pages 85–89. 
)
I appreciate that, at this stage, the standard deviation ! of a probability distribution may not mean a great 
deal to you!  But its importance will become more apparent as we now move on to the next section where 
we introduce the famous “normal” distribution. 
 
In Statistics books and courses you will often see the term “random variable”, and I shall also use this term 
from time to time later in this material.  A “random variable” just means a variable (like the number of Heads 
or the number of sixes in the recent examples) whose behaviour is governed by a probability distribution.  
The adjective “random” is used to distinguish it from variables in algebra and elsewhere which do not have 
any such connection with probability. 

 
Continuous probability distributions, particularly the normal distribution 
 
Probability distributions divide themselves into two types depending on what kind of data they represent.  
So far, we have only been considering what we might call “count data” since the values are obtained by 
counting something, e.g. the number of Heads when coins are tossed or the number of sixes when dice are 
thrown (or we could also be considering the number of red beads in the paddle).  Count data are a com-
mon type of so-called “discrete” data, where “discrete” indicates that all possible values of the data are at 
a “discrete” distance from each other.  Thus, indeed, so far we have only been working with discrete prob-
ability distributions, of which the binomial distribution is a particularly important example.  The other type of 
data is “continuous” data: these usually arise from a measurement operation as opposed to a counting 
operation.  Obvious examples are lengths, weights, times, etc.  In such cases the relevant probability distri-
butions are, as you would expect, called “continuous” probability distributions. 
 
So, when we have continuous data, can we copy what we did with discrete data such as when we were 
examining the number of Heads when two coins are tossed?  That is, can we collect various amounts of 
data, form histograms of those data as we did on page 39, and see those histograms approaching a pic-
ture of a probability distribution such as the one we saw on page 38?  The answer is partly Yes and partly 
No.  The devil, as people say, is in the detail.  There are both some important similarities and some impor-
tant differences in the continuous case compared with the discrete case. 
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For example, in the discrete case our approach was to obtain approximations for the probabilities of each 
of the various possible values as the proportion of times that each value occurs in quite a large amount of 
sampling.  But in the continuous case (would you believe?!) it actually doesn’t even make sense to talk 
about the probability of any particular value occurring!  Let’s see why. 
 
Suppose that you are taking readings of your body temperature once a day.  You might just be taking very 
rough readings as a simple check that nothing untoward is happening to you.  Let me interpret “very rough 
readings” as simply noting your temperature in degrees Celsius to the nearest integer (whole number).  All 
being well, you will probably get 37oC most of the time, with 36oC some of the time, 38oC now and again, 
and anything else pretty rarely.  But what does “37oC” really mean in this situation?  To repeat, you’re 
recording the temperature “to the nearest integer (whole number)”.  Therefore “37oC” actually implies that 
your temperature lies somewhere in the interval between 36.5oC and 37.5oC.  So then it’s quite reasonable 
to “get 37oC most of the time”. 
 
However, it is more usual to read body temperatures to one place of decimals.  So in that case, on the 
occasions when you record exactly 37oC (which, to one place of decimals, we should now write as 37.0oC), 
this actually implies that your temperature is somewhere between 36.95oC and 37.05oC.  And if you had a 
more expensive thermometer that can read temperatures accurately to two places of decimals then, of 
course, “exactly 37oC” should now be written as 37.00oC and would imply that the temperature is some-
where in the very narrow interval from 36.995oC to 37.005oC.  Those three interpretations of “exactly 37oC” 
would obviously yield very different probabilities.  Thus, as I’ve indicated, to consider the probability that 
the temperature is 37oC doesn’t really make sense—so it wouldn’t make much sense to try to estimate it!  
In fact, as you can see, the greater the precision, the smaller is the interval surrounding whatever number 
we record, and so the smaller the probability of recording that particular number.  And it’s not just a little 
smaller: you can probably see that the probability of recording exactly “37oC” reduces by something of the 
order of 90% for each extra decimal place!  The obvious but possibly worrying conclusion is that the prob-
ability of recording “exactly 37oC” (or any other precise value) rather rapidly heads toward 0 as we improve 
the precision of our measurements!  That doesn’t mean it’s impossible, but it does mean that’s it’s some-
thing which would only happen just “once in a blue moon”, as the saying has it. 
 
On the other hand, although this demonstrates what we can’t do in the continuous case, it also shows us 
what we can do.  That is to consider probabilities of the measurement lying in any specified interval.  And 
indeed, that is what is essentially always done when we have a continuous probability distribution. 
 
This is therefore all quite opposite to the discrete case in which the probability distribution actually consists 
of evaluating the probabilities of each and every possible value (or showing a picture of those probabilities).  
So what form does the “probability distribution” take in the continuous case?  What happens if we collect 
data and form histograms as we did before?  One thing I will warn you about in advance: you would need 
to collect a lot more data than in the discrete case.  That takes it rather outside the range of what you could 
envisage doing manually.  If you had had the time and the patience, you could have tossed those two coins 
1,000 times to get results like you saw on pages 38–39.  With similar time and patience you could similarly 
have thrown three dice 1,000 times and counted the number of sixes.   
 
Going by the results for tossing the two coins, it looked as if a sample size of 1,000 was quite sufficient to 
get a fairly accurate picture of the probability distribution.  You’d have probably found the same had you 
thrown three dice 1,000 times.  But, as you’ll soon see, the amount of data needed in the continuous case 
to get a close approximation to the probability distribution is of a different order of magnitude.  However, 
we can get there eventually.   
  
Since manual sampling is now effectively out of the question, we’ll need to resort to computer simulations 
(and it won’t be the last time in these Optional Extras).  For many decades there have been well-known and 
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well-tested methods available for generating data from any probability distribution (discrete or continuous).  
This current section is focused on what I often describe as “the statistician’s favourite” distribution (and 
understandably so): the normal distribution.  So, for illustration, let’s use the above case of measuring body 
temperature; we’ll suppose that the temperature is normally distributed, and see what happens. 
 
Let’s start as suggested above by measuring the temperature to the nearest degree Celsius.  As I said, you 
would usually get 36oC, 37oC or 38oC (unless you are suffering from a fever or some other medical condi-
tion).  You could get an occasional 35oC or 39oC, but that would only be very occasionally—unless you 
have a problem. 
 
So, following on from the previous illustrations, let’s first consider a sample of size 1,000.  (We’ll have to 
forget the situation previously suggested of daily readings since 1,000 is already close to three years of 
data, and we’re going to need a lot more than that!).  The computer simulation that I wrote produced the 
following histogram (I’ve used much wider boxes than previously because of what will soon develop):  
 
 
 
 
 
 
 
 
Now, of course, this picture is somewhat reminiscent of the example of tossing two coins, except we must 
remember that the 36, 37 and 38 are no longer counts but measurements rounded to the nearest integer.  
Nevertheless, it would be quite reasonable to deduce from previous work that, to this rather crude level of 
precision of “the nearest integer”, this picture gives a quite reasonable approximation to the probabilities of 
observing those integer values.  But, just to be sure, I then got the program to generate a sample of size 
10,000 readings and draw the resulting histogram.  Here it is:  
 
 
 
 
 
 
 
If you look very closely, you will see that this isn’t quite the same as before, although it is pretty similar.  If 
you’re interested, the exact proportions of 36, 37 and 38 with sample size 1,000 were respectively 0.176, 
0.801 and 0.023, and with sample size 10,000 were 0.1928, 0.7855 and 0.0217. 
 
But, obviously, this does not give us much of a clue about what would happen if we recorded the tempera-
tures to a more sensible level of precision.  So let’s move on to recording them to one place of decimals.  
Here’s the histogram for those first 1,000 observations when measured to one decimal place: 
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OK, that gives us more of an idea, but this picture is rather ragged.  So let’s try 10,000 observations; this is 
what I got: 
 
 
 
 
 
 
 
 
 
 
 
 
Good: that’s a better picture—now we have some reasonable idea of what’s going on.  Thus encouraged, 
let’s try recording those same 10,000 temperatures to two decimal places: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although this somewhat matches what we were seeing before, we’re again back to a rather ragged picture.  
So let’s give the computer a little more work to do and try a sample size 100,000: 
 
 
 
 
 
 
 
 
 
 
Less ragged, but computer time is cheap these days, so let’s go up to 1,000,000 observations: 
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Still just a little wobbly, especially at the top, so we’ll go for one more picture.  With 10,000,000 as our sam-
ple size we get:  
 
 
 
 
 
 
 
 
 
 
 
I think that’s good enough—if you’ve ever seen a picture of a normal distribution then I think you’ll recog-
nise it! 
 
But which in the whole family of normal distributions is it?  It so happens that there is one, and only one, 
normal distribution for each feasible choice of the mean µ and standard deviation !.  (This characteristic is 
actually not shared by all families of probability distributions.)  As you would expect, µ specifies where the 
distribution is centred.  And, as we see in the pictures on the next page, ! defines the shape of the distri-
bution: if ! is small then the distribution is tall and thin, whereas if ! is large then the distribution is wider 
and flatter.  Thus, if you have different normal distributions all with the same !, they all have the same 
shape but are shifted sideways from each other.   
 
The normal distribution with mean µ and standard deviation ! is often denoted by N(µ ,!2)—again showing 
the conventional statistician’s preference for referring to the variance !2 rather than the standard devia-
tion !.  In particular, the normal distribution with mean 0 and standard deviation = variance = 1, i.e. N(0,1), 
is known as the standard normal distribution. 
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Besides seeing the shape of the distribution developing from the histograms as the sample size increases 
and with the boxes becoming correspondingly narrower, you can also get reasonable approximations to µ 
and ! as the sample size increases.  The computer program which produced the histograms also com-
puted the values of X!  and s each time.  The values obtained for all the sample sizes illustrated in this and 
the previous section were as follows: 
    
      Sample size       X! ) ) )))))))s 
                      10  36.33460 0.38805)
                    100  36.77109 0.36109)
) ) )               1,000  36.84587 0.34558 
                 10,000  36.80593 0.34372   
             100,000  36.80136 0.35047  
          1,000,000  36.79796 0.35034)
        10,000,000  36.80027 0.35015 
 
As you might guess from examining those figures, I was in fact generating data from N(36.8, 0.352). 
 
Because of its appealing symmetrical shape, the normal distribution is often referred to as having a bell-
shaped curve.  It has further appeal to the Mathematical Statistician for two main reasons: 
 

• In practice, data from many sources are mainly clustered around their average (mean) and occur 
less frequently further away from their mean—which is nicely illustrated by this bell shape;  and  

• there turn out to be a whole host of pleasant mathematical theorems and results relevant to normal 
distributions, but to no others.  We shall see one of the most famous creations in the next section:  

the Central Limit Theorem.  
 
However, before moving on to that section, let’s get into just a little detail about finding probabilities when 
we have a normal distribution.  So far we have established the fact that (as is the case with all continuous 
distributions) there is no point in trying to consider probabilities of getting individual values (because all 
such probabilities are zero!), so that instead we must concentrate on finding the probability that a normally 
distributed random variable lies within any specified interval.  (Incidentally, in that respect, we must slightly 
extend the idea of an “interval” here to include “one-sided” intervals, i.e. the probability that the observed 
value is at least some number or the value is at most some number.)  But how can we do all this? 
 
We know how we could do it approximately by the method we have already demonstrated in this and the 
previous section:  get lots of data from that normal distribution and find the proportion of those data that lie 
within any desired interval.  But how can we do it without going through all that?  The answer actually lies 
in one of Dr Deming’s quotations that we saw on page 30.  He spoke of a “graph of the normal curve and 
proportions of area thereunder”.  We have already noted that any pictures of probability distributions or of 
the approximating pictures of histograms with proportions in the boxes (rather than frequencies of 
occurrence) contain a total area of 1.  So the “proportions of area thereunder” are, in fact, probabilities.  In 
this sense, the normal distribution has an extremely appealing and convenient feature (a feature which is 
not wholly unique amongst probability distributions but is nevertheless pretty rare): those “proportions of 
area thereunder” apply irrespective of the particular values of µ and  !. 
 
On the next page there are the same three “graphs of the normal curve” as on page 47 but now with some 
“proportions of area thereunder” inserted.  So, as an example, you can immediately read off that, for any 
values of µ and !, the probability of the normal random variable lying in the interval between µ – 2! and 
µ + 2! (often expressed as “lying within two standard deviations of the mean”) is: 
 

2 ! (34.1% + 13.6%)  =  2 ! 47.7%  =  95.4%  or  0.954 . 
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As is clearly seen in those pictures, and as is in any case obvious from the preceding development, the 
curve which illustrates a continuous probability distribution is relatively high in regions of high probability 
and relatively low in regions of low probability.  The curve is therefore usually referred to as the probability 
density function, or pdf for short.  (A relatively ancient expression for the pdf was frequency function—and 
this is what Shewhart was referring to in his quotation on page 30.) 
 
On pages 90–91 in the Technical Section I shall describe how the probability of any normal random variable 
lying within any specific interval can be quickly found using widely-available tables of the normal distribu-
tion.   
 
However, there are a couple of particular probabilities that are frequently used in applications of the normal 
distribution to popular techniques of so-called “statistical inference”.  Those two probabilities are illustrated 
below as “proportions of area thereunder”.  The two diagrams show that, with a normal distribution, 
 

• a random variable has a 95% probability (coloured yellow) of lying within 1.96 standard deviations 
of its mean µ, 2.5% probability (left-hand tail coloured red) of being less than µ – 1.96!, and 2.5% 
probability (right-hand tail coloured red) of being greater than µ + 1.96!;  and  

• a random variable has a 99% probability (coloured yellow) of lying within 2.58 standard deviations 
of its mean µ, 0.5% probability (left-hand tail coloured red) of being less than µ – 2.58!, and 0.5% 
probability (right-hand tail coloured red) of being greater than µ + 2.58!. 

 
On pages 54 and 55 I briefly describe the two most commonly-used methods of statistical inference, and 
the way in which these particular figures apply to them. 

)
)
)
)
)
)
)
)
)
)
)
)
)

Incidentally, if I were to show you a similar diagram with 99.8% in the yellow region and thus 0.1% in each 
of the two red tails then this would correspond to replacing the 1.96 or 2.58 with 3.09—which explains the 
remark made about “3.09!” in the middle of page 2 in these Optional Extras.  

   µ–2.58!                                                                                                                                                             µ+2.58! 

                                         µ–1.96!                                                                                                                µ+1.96! 
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The Central Limit Theorem 
 
The Central Limit Theorem is a truly remarkable result which, within the context of conventional Statistics, 
does indeed place the normal distribution in a position of truly unique importance.  Descriptively, it can be 
summarised as follows: 
 

Irrespective of which probability distribution is being sampled, for sufficiently large samples the 
sample mean X! ) is almost exactly normally distributed.  (In theory, there are some probability 
distributions that are exceptions to this statement but, in practice, they are rare.)  

 
There is one respect in which this statement can be confusing.  Let’s suppose the data are being drawn 
from a distribution having mean µ and standard deviation !.   As the sample size increases, the distribution 
of X!  keeps changing.  In particular, since we know that X! )gets closer and closer to µ as the sample size 
increases, the distribution of X! ) must keep getting narrower and narrower and therefore taller and taller 
(since, as always, the total area underneath it has to be equal to 1).  So eventually it will get pretty difficult 
to see what kind of shape the distribution has other than it is very tall and very thin!  To overcome this 
problem, the Central Limit Theorem is often expressed as follows: 
 

If X! )is the mean of a random sample of size n taken from a population having mean µ and vari-
ance !2 (i.e. standard deviation !) then 
 

 
        Z  =   
  
is a random variable whose distribution approaches that of the standard normal distribution 
N(0,1) as  n !)1 .  (Z can be referred to as a “standardised” version or form of  

 
The fact that the random variable Z in this statement has a mean of 0 is fairly obvious: the mean value of 

X! is, of course, equal to µ and so the mean value of (X ! µ)!
 must surely be 0, as must any multiple of it.   

 
The expression in the denominator of Z is the standard deviation of X :!  this will be proved in the Technical 
Section on page 80.  That expression is obviously consistent with a fact which we know to be true, i.e. that, 
as the sample size increases, the variability of X!  keeps getting smaller (so that it approximates the value of 
µ better and better).  
 
As you might expect from the fact that ! is a measure of variability, dividing a random variable by its stan-
dard deviation always changes its standard deviation to 1.  So the facts that the mean and variance of Z 
are respectively 0 and 1 are bound to be true.  The new and remarkable information from the Central Limit 
Theorem is that the distribution of Z almost always becomes closer and closer to the standard normal dis-
tribution as the sample size increases (irrespective of what kind of distribution the sample is being drawn 
from—either discrete or continuous), rather than to any other distribution which has mean zero and stan-
dard deviation 1.  I implied above that there exist some rare and rather peculiar distributions for which this 
is not true, but I think that you’re unlikely to ever meet one in the “real world”! 
 
Of course, usually our sample sizes n are rather small compared with “n !)12!  But what makes the Cen-
tral Limit Theorem even more attractive is that, almost always, the movement toward normality of  X ʼs

_
 dis-

tribution already becomes apparent with very reasonable sample sizes: the distribution is usually effectively 
indistinguishable from normal for n no larger than 20 or 30 at most, and is often very close to normal for 
much smaller n.  As evidence for this, it’s time for some more computer simulations!  As a rather remark-
able fact, even Shewhart showed the results of some simulations to verify this attractive feature.  You 
notice that I do not say “computer simulations” there: Shewhart published the results in his 1931 book—

  X ! µ!

" n

X .)!
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and that was rather a long while before computers were around.  If you are interested in how Shewhart 
carried out his simulations without a computer, I refer you to pages 182–183 of his book. 
 
For the results of the computer simulations shown here, I generated samples of vari-
ous sizes from three continuous probability distributions.  The first was one of the 
two that Shewhart used: a uniform distribution whose pdf is illustrated alongside.  
The reason for the name is obvious: the probability is spread uniformly over an inter-
val.  As a good example, the values you get by pressing the “RAND” key on your 
calculator have a uniform distribution over the interval from 0 to 1. 
 
Firstly, I generated samples of size just n = 2 from a uniform distri-
bution: here is the interesting histogram of values of the “stan-
dardised” version of X! (i.e. the “Z” in the formal statement of the 
Central Limit Theorem).  In this and all the simulations that follow, 
the samples were generated 10,000,000 times.  This is in contrast 
to Shewhart’s 4,000 times—but even those few must have taken 
him quite a while! 
 
I then moved on to samples of size n = 4.  Here is the histogram 
that was obtained.  I confess that this one surprised even me—
it’s incredibly like N(0,1) already: 
 
 
 
 
 
It hardly seems worth going any further, but here is the histogram 
with n = 10: 
 
 
 
 
 
 
 
The feature of the uniform distribution which really helps the Central Limit Theorem’s 
effect to become clear so quickly is the fact that, like the normal distribution itself, it 
is symmetric.  So presumably that is why Shewhart then moved on to a triangular 
distribution whose pdf is illustrated here and is, of course, nothing like symmetric: 
 
 
 
 

Let’s see what happens with samples of size 2 now: 
 
This is again quite a remarkable change from the distribution with 
which we started. 
 
 



!"#$%&'%(%)#"*+,)-.#*/%01%)-12/1$0-1"3%4$"$0*$0)*5%

!"#$%&'()*+#,'-)).))"'/0)!")))

So let’s try n = 4: 
 
If you look closely, you will see that this is still slightly lop-sided, 
thus still showing the effect of the non-symmetry of the triangular 
distribution with which we started.  But the Central Limit Theorem 
effect is remarkably evident already. 
 
 
And so we move on to n = 10.  Still not perfect, but it’s almost 
there.  
 
 
 
 
 
 
Some similar simulation work is reported in Chapter 4 of Wheeler and Chambers’ 
Understanding Statistical Process Control.  Three further distributions are illus-
trated there, but I’ll use just one of them here: the one that is, by far, the most 
severe test of the five for the Central Limit Theorem.  This is the exponential distri-
bution, whose pdf is shown alongside.  It’s a distribution which is used as a model 
in many situations including failure analysis and queuing theory, but its main inter-
est here is as one of the most unsymmetric distributions imaginable. 
 
 
 
 
 
 
So let’s see what shape of distribution the standardised version 
of X! )has with n = 2.  Here it is: 
 
In this histogram It is fairly easy to see the combined influence 
of both the original shape of the exponential distribution and of 
an early stage of the Central Limit Theorem.  But there’s a long 
way to go. 
 
With n = 4 we have: 
 
 
 
 
 
 
And with n = 10 we have: 
 
 
 
 
 
Well, it is getting there but, unsurprisingly, not very quickly.  
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So, in this case, let’s give the computer some real work to do 
and go right up to n = 100: 
 
I think that just about does it.  Yes, the Central Limit Theorem 
even works with something as unfriendly as the exponential 
distribution! 
 
After all this, it’s hardly surprising that, in developing their theory as well as their tools and techniques, con-
ventional statisticians have been very happy to base them on assumptions of normality, justifying this via 
the Central Limit Theorem in the case of large samples, or directly requiring the normality assumption in the 
case of small samples—for another really nice feature is that if the population being sampled is already 
normally distributed then X! )itself is also exactly normally distributed, however small be the sample size. 
 
Finally then in this crash-course, we come to two of the conventional statistician’s favourite applications of 
the above ideas, often regarded as the most important aspects of so-called “statistical inference”: confi-
dence intervals and hypothesis tests. 

 
Confidence intervals 
 
If one wants to estimate the mean µ of the population from which data are being drawn, it is pretty obvious 
that we should use the sample mean X! )as the estimator.  Yes, but that’s not very useful unless we have 
some idea of how close X!  is likely to be to µ. 
 
Assuming that X!  is near enough to being normally distributed, so that 
 

Z   =     X ! µ!

" n
 

 
is near enough to being standard normal, then, as we have seen on page 50, there is about a 95% proba-
bility of Z lying between –1.96 and +1.96.  A little algebra enables this range to be expressed as  
 

X! )– 1.96! n  ����µ           X! )+ 1.96 ! n . 

 
If the value of ! is known then the first and last parts of this relationship can be evaluated, thus providing 
an interval within which we “are 95% confident that µ lies”.  This interval is referred to as a “95% confi-
dence interval” for µ.  However, of course, if the value of µ isn’t known then it’s rather likely that ! is also 
not known!  So it is quite common practice to compute the sample standard deviation s and throw that into 
the relationship instead, presumably hoping it’s “near enough” to !.  Alternatively, if n is judged to be too 
small to do that, the conventional statistician conveniently assumes that the data-values themselves are 
normally distributed, in which case   

t   =     X ! µ!

s   n
 

 
has what is known as a “Student t” distribution, tables of which can then be used to find a number to insert 
into the relationship in place of the 1.96.  (“Student” was the pen-name of an English statistician whose real 
name was W S Gosset.) 
 
I expect you will immediately appreciate (referring again to page 50) that a “99% confidence interval” can 
be obtained by replacing 1.96 by 2.58 throughout this discussion. 
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Hypothesis tests (also known as significance tests or tests of significance) 
 
Finally, suppose we want to use the value of X!  to formally “test the hypothesis” that µ  has some proposed 
value: for sake of argument, say µ = 37.  “µ = 37” is then usually referred to as the null hypothesis and is 
denoted H0.  How can we formally test for the truth or otherwise of H0? 
 
The standard approach is as follows.  It starts by tentatively assuming that H0 is true.  It would then follow, 
of course, that 
 
 
          Z  = 
 
 
has the standard normal distribution, at least approximately, under the same conditions as previously.  Also 
as before, it is unlikely that the value of ! is known and so the sample standard deviation s is usually sub-
stituted instead, especially if the sample size n is large.  It is easy to see how the resulting test statistic       
Z behaves.  If the assumption that H0 is true holds then X!  should be reasonably close to 37 so that Z will 
be relatively small (positive or negative).  But if H0 is not true, particularly if it is seriously untrue—i.e. µ is 
very different from 37—then X! )will reflect that very different value of µ, leading to a relatively large (positive 
or negative) value of Z.   
 
But how large is “relatively large”?  The same figures as before provide the answer.  For example, if H0 is 
true then we know there is (exactly or approximately) 95% probability that Z lies between –1.96 and +1.96.  
This interval is therefore often referred to as the “acceptance region”, thus leading to formally accepting H0 
if Z falls within it.  All other values, i.e. all values outside the interval –1.96 to +1.96, thus form a corres-
ponding “rejection region” such that if Z is found to have any such value then the formal decision is to  
“reject H0”.  This “rejection region” is usually referred to as the “5% critical region”, and the operation is 
referred to as carrying out the test at the “5% significance level”.  Thus the “significance level” is defined as 
the probability that the test wrongly rejects H0, i.e. rejects H0 when H0 is in fact true.  Note that the smaller 
the significance level at which H0 can be rejected, the stronger is the evidence for so doing.   
 
It should also be noted that there is a considerable non-symmetry in such a testing procedure.  If we con-
sider continuous distributions in particular then, while strong evidence may be found for rejecting H0, one 
can never find evidence of any kind for believing that H0 is actually precisely true: all one can truthfully do is 
to not reject H0.  As soon as I realised this long ago, I never subsequently used phrases like “accept H0” or 
“acceptance region” since I regard them to be misleading because of their sounding more positive than is 
appropriate.  I guess it’s rather like a person in a law-court being judged as either “guilty” or “not guilty”: 
the latter verdict does not imply that innocence has been proved.  The difference with this analogy is that it 
is nevertheless possible for innocence to be proved in a law-court, whereas in a hypothesis test involving a 
continuous distribution, it can never be proved that H0 is true. 
 
There are two further aspects of confidence intervals that can also be carried over into hypothesis testing.  
First, if n is small but normality is assumed then a replacement figure for 1.96 can be found from tables of 
the Student t distribution.  And secondly, the above hypothesis test can be carried out at the 1% signifi-
cance level by replacing 1.96 by 2.58 throughout.  
 
 
 
 
 
 
 

  X ! 37!

" n
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PART E.  IS THERE ANYTHING NORMAL ABOUT CONTROL CHARTS? 
 

Not a lot!  Firstly, as you now know and unlike most techniques in traditional Statistics, control charts are 
specifically designed for what Deming referred to as “analytic studies”, i.e. their prime purpose is to provide 
help toward an improved future rather than simply describing characteristics of the current (or past) state.  
Thus in that sense they are indeed not “normal” compared with most statistical methods.  Further, their 
“validity” does not depend upon data being normally distributed—or being describable in terms of any 
probability distribution:  “the reason is that no process ... is steady, unwavering” (page 30).   
 
But what about those control-chart constants like 2.66?  Now, some nice mathematics is needed in order 
to derive them.  And it is true that they are derived using the model of a normal distribution.  But the fact is 
that the mathematician needs some such model or assumption or else he cannot produce any nice mathe-
matics!  So we either do without ever having such numbers or we have to allow some model or assumption 
in order to get them.  And to use the normal distribution for this purpose is particularly convenient for the 
mathematician.  The meaningful question in practice is not whether such numbers are “valid”: it’s whether 
or not they are found to be useful.  As we saw on Day 1 page 8 and quoting from the creator of the control 
chart rather than from his famous student, their “validity” does not come from the fact that they have been 
derived using “a fine ancestry of highbrow statistical theorems”.  On page 18 of Shewhart’s 1931 book, his 
next sentence was: “Such justification must come from empirical evidence that it works.”  Experience of 
well over three-quarters of a century is clear:  it works. 
     

 
1.  Back to basics 

 
You have seen several instances in the course where I’ve made what might have appeared to be deroga-
tory comments about “conventional” or “traditional” statisticians.  Actually the problem is, of course, not 
with the statisticians themselves but with the way that they have been taught.  By now, if you have read 
Parts C and D, you know something about that.  And then, as so often the case, one of Dr Deming’s 
famous and perceptive one-liners comes into my mind;  in this case it’s:  “How would they know?”. 
 
The basic problem is the teaching of Statistics as if it were merely a branch of Mathematics.  Or rather: 
doing that but not clarifying the limitations of so doing when attempts are subsequently made to apply the 
consequences of that teaching to the real world: in real situations, with real data, with real processes, in 
real circumstances. 
 
Both learning and teaching Statistics as if it were merely a branch of Mathematics can be very convincing.  
I should know:  I’ve done plenty of both in my lifetime.  Mathematics is very convincing.  Of course it is:  in 
essence, Mathematics is simply (but not necessarily easily!) an exercise in logic.  Mathematical logic con-
sists of arguments like 
 

 “If this is true and if that is true then here’s something else which is true.”  
 
These are statements of absolute truth—and that’s very comforting!  So of course Mathematics is convinc-
ing: you keep learning what are unarguably new truths!  What follows the “then” in that statement is a new 
truth—as long as what follows the “if”s are true.  And there’s the problem in moving to real-world applica-
tions. 
 
In Mathematical Statistics you will find loads of logical progressions such as: 
 

“If we have one or more normal distributions and if we can draw random samples from those distri-
butions then ... ” 
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except that the “if”s are not usually emphasised as I have just done.  Where do the “if”s come from?  In a 
subject like Mathematical Statistics they are quite likely to be partly motivated by things that might be 
fondly hoped to approximately happen in real life.  But they are definitely motivated by what makes the 
mathematics possible to do!  You will often come across histograms whose shapes look roughly like a nor-
mal distribution, implying that (if the source from which the data are taken was exactly stable) the dis-
tribution from which they come is something like a normal distribution.  Certainly you may believe that toss-
ing coins or throwing dice—or selecting 50 beads out of a container of 4,000 beads using a paddle—pro-
duces something like a random sample.  But Mathematics is not do-able with “something like”s.  Mathe-
matics needs “exactly”s.  And so what follows the “if”s in the mathematical argument are not “something 
like”s, for no progress with the mathematics can then be made.  Instead, at best, they are idealisations of 
what might be regarded as roughly happening in practice which, if those idealisations are assumed to be 
true, permit and enable the mathematical argument to proceed. 
 
As I said back on page 29 (which in turn recalled something on Day 1 page 6), delegates having some qual-
ification in Statistics could be something of a problem in my seminars.  Initially I did not have the wit to 
describe the obstacles to transferring mathematically-obtained results into statistical practice in the way 
that I have just expressed them above.  So what could I do instead to attempt to convince those statisti-
cians?  Eventually I hit upon some things that worked.  If ever you find yourself confronted by mathemati-
cally-educated statisticians, I hope that both the above discussion and the rest of what follows in this part 
of the Optional Extras will prove helpful to you if you ever find yourself faced with any similar kind of awk-
ward situation. 
 
Now, it might be that you became so excited by some of what you were learning in Part D’s “crash-
course”, such as the famous and amazing Central Limit Theorem and the simplicity and elegance of form-
ing confidence intervals, that you may have forgotten why I have included Part D in this material!  It was to 
help you to understand how the conventional statistician thinks and why he thinks that way.  Thus you now 
have some means of communication with him which might well not have existed previously. 
 
So, thinking back to the very beginning of the crash-course (page 37), let’s get back to reality. 
 
We began with what I described there as “quite familiar ground”: the histogram.  And, of course, to an 
extent, it was.  But when the histogram was introduced early in our 12 Days course, the approach and dis-
cussions were rather different from what is usually met in an introductory conventional course, as typified 
by the crash-course.  The “common ground” was indeed that the histogram is a particular way of produc-
ing a “picture” representing a collection of data.  But a prime difference relates to the kind and likely source 
of the data being illustrated.   
 
With our Shewhart/Deming background we are very likely to presume that the data being illustrated in a 
histogram come from some process: we regard the understanding and improvement of processes to be our 
main aim and purpose of collecting data.  But that is not the language you normally see and hear in the 
introductory conventional course—there was nothing of that in Part D’s crash-course.  Instead, in the 
crash-course, the source of the data illustrated in a histogram was expressed more in terms of what would 
soon be met in the conventional course: what I have previously referred to as the “life-blood” of the con-
ventional statistician, namely probability and probability distributions.  This is also the reason you are rela-
tively unlikely to see the run chart at an early stage in the conventional course, despite its simplicity and its 
usefulness: run charts do not fit into this mould.  Yes, conventional Statistics can eventually come up with 
some methods of analysing run charts: but nothing that would suit the early stages of an introductory 
course and nothing which is anywhere near as straightforward and effective as control charts.  Recall the 
fundamental problem of the histogram.  It was this:  if there was any time-dependence in the behaviour of 
the process (and, to put it mildly, there usually is!), the histogram ignores it.  It was there in the original 
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data, ready to be seen on a run chart or control chart and thus to be useful to us.  But it is rendered invisi-
ble by the histogram. 
 
As we have seen in the crash-course and would soon be seen in the introductory conventional Statistics 
course, one common way of describing the data is in terms of something like “a random sample from a 
population”.  Another common way is as the results obtained by carrying out repeated trials of an experi-
ment or of some operation.  (Although sounding rather different, these two ways often turn out to be pretty 
much equivalent to each other.)  But surely it is sensible to carefully examine these two descriptions of the 
source of the data—which is usually not done in the conventional course.  So let’s do it.  
 
First, what does “a random sample from a population” imply?  A “population” is some collection of “things” 
—possibly people but often not.  In the Red Beads Experiment, the population is a collection of 4,000 
beads.  A “sample” from the population is, of course, a selection of some of those “things” from the popu-
lation—we are familiar with samples consisting of 50 beads obtained using the “paddle”.  So what does a 
“random sample” imply?  It implies something very specific: namely, that each and every possible different 
sample (of the specified size) is equally likely to be drawn as any other. 
 
In the case of the Red Beads Experiment, that’s a lot of different possibilities!  According to my reckoning, 
there are exactly  

30,645,728,733,196,872,985,716,792,733,231,423,451,265,770,337,904,251,108,650,805,313,511,833,016,584,223,503,281,029,862,021,442,852,832,482,389,462,720  
different possible selections of 50 beads from the population of 4,000 beads.  (If anybody thinks differently 
then do please get in touch with me—I’m still waiting!)  And “random sampling” means that each and every 
one of those selections is equally likely to be drawn as any other.  That’s a pretty stringent requirement!  It 
would require remarkably consistent workmanship in the production of the beads and, I suggest, a rather 
more refined sampling mechanism than that wooden or plastic paddle!  
 
The introductory course then swiftly moves on to Probability—no wonder since, as I’ve said before, the 
conventional statistician regards Probability as the branch of Mathematics on which the whole subject of 
Statistics is based. 
 
As we have seen in Part D, the idea of the probability of an event occurring in some particular situation is 
often described in terms of the long-term proportion of occurrences of that event, implying (conceptually at 
least) that it is possible to repeat the situation being envisaged ad infinitum.  Moreover, it also implies that 
the likelihood of occurrence of the event of interest remains wholly unchanged throughout all that rather 
long time.  So again we have the implication that whatever is being considered stays “steady, unwavering” 
forever, the property which I refer to as “exact stability”.  As mentioned in the crash-course, exact stability 
is a far more exacting notion of stability than that which is considered in the control-charting context;  

whereas the latter is an entirely practical proposition, the former is pretty fanciful!  But usually such doubts 
about this major assumption are hardly even mentioned, so again the student is effectively being “brain-
washed” to ignore time-dependence. 
 
As already implied when referring to random sampling, many examples of probability calculations, both at 
the introductory stage and later, make use of considerations of symmetry, which is where the various pos-
sible outcomes are all regarded as equally likely to occur.  As previously mentioned, common examples are 
the two sides of a coin, the six faces of a die, or the 52 playing cards in a “well-shuffled deck”.  The dif-
ficulty, or rather the impossibility, of creating such symmetry in practice is also rarely mentioned, so yet 
again one might suggest that there is some unfortunate brainwashing going on: effectively that the world 
can be described in terms of mathematical idealisations that are unattainable in practice.  Recall the 
evidence which Deming himself provides (Out of the Crisis page 300[351–352]) which we saw on Appendix 
page 11.  Over the years he tried four different paddles, two of them for large numbers of experiments.  
“Paddle No. 1, used for 30 years, shows an average of 11.3” whereas “the cumulated average for paddle 
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No. 2 over many experiments in the past has settled down to 9.4 red beads per lot of 50.”  Deming carried 
out the Experiment on Red Beads a very large number of times.  Random sampling and assumptions of 
symmetry would, without any real doubt, instead have produced long-term averages pretty close to 10. 
 
Now, don’t get me wrong.  I’m not trying to imply that, because the Mathematician’s assumptions are 
rarely if ever attainable in practice, Mathematics is useless in practice.  Of course not.  I often quote a 
statement made by the famous British statistician Professor George Box (whose huge Statistics Depart-
ment at the University of Wisconsin I was privileged to work in during 1967–68, very near the beginning of 
my career).  His very astute observation was that “All models are wrong—but some are useful”; I rather 
wish that George had also appended a few qualifying words such as “in some circumstances”.  By making 
those idealising assumptions, the Mathematician can produce all sorts of results that would be quite 
impossible to derive otherwise.  And many of them are highly useful in practice.  My “grumble” is that the 
student is not reminded often enough, if at all, that the proof of those results does strictly depend on those 
idealising assumptions.  Thus, when trying to use those results in practice, the student is likely to be insuf-
ficiently wary about whether practical situations of interest might be too far removed from the idealising 
assumptions for those results to hold sufficiently closely to be useful. 
 
So what should be done?  Let me complete Shewhart’s quotation to which I alluded in the second para-
graph of page 57 (from page 18 of his 1931 book): 
 

“... the fact that the criterion which we happen to use has a fine ancestry of highbrow statistical the-
orems does not justify its use.  Such justification must come from empirical evidence that it works.  
As the practical engineer might say, the proof of the pudding is in the eating.” 
 

The conventional statistician has sometimes produced some claims about control charts, claims that in-
deed have a very fine ancestry.  But where is their empirical evidence: where is the proof of the pudding?  
On the other hand, I shall produce some empirical evidence, but my empirical evidence will confirm that 
what the conventional statistician is often heard to say about control charts actually doesn’t work! 
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2.  Two simulation studies  
 

If you decided to work through the crash-course (Part D) then it may be quite a while since you read Part C.  
I shall therefore start by reproducing the final section of Part C from page 35 since here I shall then con-
tinue directly on from that point. 

 

... and what can be done about it 
 
Substantially, the conventional statistician’s case for requiring normality to make control charts and 
their control limits “valid” exists on two main fronts.  Such a statistician believes that normality is 
needed: 
 

• because control-chart constants that are used in computation of control limits, such as the 
2.66 with which we became familiar on Day 3, are derived from normal distribution theory 
(as indeed they are);  and 

 
• so that a probability interpretation can be given to control limits:  specifically, the claim is 

often made that, under normality, there is a probability of 0.0027 (i.e. 0.27%) that any par-
ticular data-point falls outside Shewhart’s 3!-limits (note that 0.27% = 2 ! 0.135% when 
you look at page 49) if the process is in statistical control. 

 
Now again, any acceptance of Shewhart’s and Deming’s teachings immediately leads to the denial 
of the conventional statistician’s claims in both of these respects.  The “fortunate and remarkable” 
facts alluded to [on page 34] are however that, even if we ignore what Shewhart and Deming said 
about both normality and probability interpretations (recall, in particular, page 30), the above claims 
are still demonstrably wrong!  In other words, we are able to wade right into the conventional sta-
tistician’s camp, onto ground which both Shewhart and Deming believed to be without foundation 
yet which the conventional statistician needs to have faith in (for all that he has learned is built upon 
it), and to talk to him in language which he both understands and accepts (even if we don’t), and to 
still produce evidence which disproves his beliefs!! 
 
That evidence is demonstrated in Part E on pages 65–70. 

 
A conclusion which must surely be drawn is that, if you hear (as one does) a conventional statistician pro-
claiming something to the effect that, for control charts to be “valid”, the data must be normally distributed, 
the said statistician really does not know what he’s talking about. 
 
The two particular issues raised above both stem from the fact that some help from Mathematics is neces-
sary in order to develop the details of where control limits should be placed.  We have the guidance from 
Shewhart about “3!” but that isn’t sufficient to provide exact details.  So how can Mathematics help to 
provide those details?  As already emphasised: only by making idealised assumptions about where the 
data will come from.  Unsurprisingly, the Mathematical Statistician likes to assume the data come from a 
normal distribution.  That is the assumption made (plus exact stability, random sampling, and the rest), 
combined with Shewhart’s “3!”-guidance, in order to obtain the 2.66 for producing the control limits using 
moving ranges.  The same is true of all the values of h, H and h2 on pages 20–22.  The manner in which the 
values of these constants are derived is described in the Technical Section on page 83. 
 
So the first issue which arises is that, because these control-chart constants depend upon the assumption 
of normality, the conventional statistician claims that the data need to come from a normal distribution in 
order for the control chart to be “valid”.  Now, you and I know that, if that were really true, the control 
charts we use (and any others that could ever be devised) would never be “valid”!  With real process data 
we don’t even believe in exact stability, i.e. that they come from some fixed probability distribution—real 
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processes are never completely unchanging over time—let alone having a normal distribution in particular.  
So, isn’t “Are they useful in practice?” the important question to ask about control charts?  Well, nearly a 
century of their use would seem to answer that question!  The second issue is that the Mathematical Statis-
tician needs to express his conclusions in terms of probabilities—he feels he hasn’t done a “proper job” 
otherwise.  But you and I know that, again with processes never being completely unchanging over time, it 
cannot ever be possible to express anything about them in terms of exact probabilities. 
 
Now, this matter of processes never being wholly unchanging, i.e. not being exactly stable, is a really hard 
nut to crack with Mathematical Statisticians.  That’s not surprising for, as you now know, almost all of their 
methods depend on exact stability (probability, probability distributions, and the like).  Hence, when I was 
faced with such debates, I regarded that as a brick wall upon which I could make no impression, at least 
for the time being.  So I asked myself whether there could be some way that (in order for them to listen to 
me) I could assume exact stability but still show that what they were saying with regard to the two issues 
just outlined was simply untrue.  There was.  I devised two computer simulations, one for each issue.  I no 
longer have my original programs (it was a long while ago!) but fortunately I still have some of the results 
that they produced.  I have therefore recently rewritten those programs from scratch and have found (with 
relief!) that these new programs are producing output that is entirely similar to the old results.  I can there-
fore now proceed to the rest of this section with confidence! 
 
So firstly let’s take the issue that, because the constants we use to find our control limits have been com-
puted by mathematicians after they assume the data come from normal distributions, our data have to 
come from normal distributions in order for the control limits to be “valid”.  For this I developed an argu-
ment based on one-at-a-time data.  As you know, there is one “magic number” needed to construct control 
charts in this case: 2.66.  It will be seen on page 65 that there is a direct relationship between the 2.66 and 
the conversion factor h which was tabulated on page 20.  At that stage I was discussing the issue that, 
when working with a-few-at-a-time data, variation is measured using ranges rather than with sample stan-
dard deviations.  I pointed out that, since the standard deviation is a kind of average or typical gap between 
the values in the data and their mean, it is obvious that the range (largest value minus smallest value) will be 
greater than the standard deviation.  Therefore if one wanted to change the range into a measure of varia-
tion which is on the same scale as ! then it would have to be divided by some conversion factor:  that’s the 
conversion factor which is denoted by h and which, of course, depends upon the subgroup size.  With one-
at-a-time data the argument is similar:  the only difference is that moving ranges are used to measure vari-
ation.  But moving ranges are effectively ranges of subgroups of size 2, and so then the relevant conversion 
factor is the value of h for n = 2, and that is 1.28.  A sensible estimator of ! (the standard deviation of the 
assumed normal distribution) is thus obtained by dividing the mean moving range   MR

——
 by 1.28. 

 
I thought it would first be interesting to go along with the conventional statistician by generating data from 
a normal distribution and then examining how good   MR

——
÷1.28 turned out to be as an estimator of !.   

 
Having learned something about that, there was an obvious way to examine the claim that our data have to 
come from a normal distribution in order for the control limits to be “valid”.  That was to modify the pro-
gram so as to generate data from some other probability distributions (chosen to be clearly very different 
from normal distributions) and examine how good the estimator   MR

——
 ÷ 1.28 turned out to be as an estimator 

of ! with them.  Now presumably, if there were any virtue in the notion that normality is necessary for the 
standard method of constructing control charts for one-at-a-time data to be “valid” (or, at least, useful), the 
performance of this estimate should be “good” under normality while it should be “bad” otherwise.  Was it?  
Both the full details and the results of this simulation study are contained in Section 3 (pages 65–67). 
 
Now let’s move on to the second computer simulation.  This was to examine the claim made by some 
Mathematical Statisticians that, if the data to be plotted on a control chart come from a normal distribution, 
they can provide probability interpretations of what the control chart does—just as they can in the case of 



!"#$%&'%()%$*+#+%!"#$%&"'%,-#."/%"0-1$%2-,$#-/%2*"#$)3%

!"#$%&'()*+#,'-)).))"'/0)!")))))

other statistical techniques with which they are much more familiar.  There is one particular probability 
interpretation that is often seen.  It is the claim that, if we have an exactly stable process with the data 
coming from a normal distribution, the use of Shewhart’s “3!” control limits on an  X

!
- chart  results in there 

being just a 0.0027 probability that a value of X!  falls outside the control limits. 
 
Here are a couple of examples of such a claim that I found on the internet.  I cannot recall exactly where—
again, it was a long while ago—and, in any case, I would not want to encourage you to chase up such 
sources!  Firstly, this is a copy of part of some material supposedly telling us “where do typical control 
chart signals come from”:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
And, secondly, here is an extract from something titled “Designing Control Charts Control Region”: 
 

“If we observe a signal even though the process has not changed, we have made a Type I error (").  
This error leads to inefficiency since we will react to a signal but not find any actual cause, the proc-
ess having not actually changed.  By convention, the probability of a Type I error (") is specified as 
0.0027 (0.27%).  This results in the control limits trapping 99.73% of the statistic that is being plot-
ted on the control chart. 
 Note: 99.73% equates to !± !3  standard deviations from the process average, if the data be-
ing plotted is normally distributed.”  

 
You have previously seen how that 0.0027 arises.  To remind you, it comes from observing in the diagrams 
on page 49 that there’s a 0.00135 probability in each of the two “tails” of a normal distribution beyond the 

!± !3!  points.  So it is indeed true that the probability of a normally-distributed random variable being more 
than 3 standard deviations away from its mean is 0.0027. 
 
But, hold on.  In order to be able to communicate with the conventional statistician, we have already gone a 
long, long way.  We have gone so far as to ignore Deming’s crucial observation that “no process ... is 
steady, unwavering” so as allow him the possibility (which he needs to assume) that a process can produce 
data from the same probability distribution hour after hour, day after day, week after week—and moreover 
that that probability distribution could be a normal distribution.  Despite not believing this for a host of 
reasons, we are prepared to pretend that it could be true (at least for the time being). 
 

For interest, I asked the delegates at several of my seminars whether any of their processes behaved like 
that.  Nobody ever said “Yes”.  Some even greeted the suggestion with considerable mirth! 
 

But pretending it is feasible to actually know which normal distribution we have is surely a step too far even 
for the conventional statistician!  However, that is what is needed for that probability of 0.0027 to be “valid” 
(there—we can use some of his own language!). 
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If we politely point out that fact, he will go along with it (unless he is of extraordinarily closed mind).  He’s 
quite used to that kind of problem in his own field, so I think he will accept that it is a necessary evil that, in 
the absence of divine inspiration about the values of µ and !, we shall have to be content with estimates of 
them computed from the data.  Never mind, the control chart has been around for the best part of a cen-
tury and has been seen to be pretty useful during that time, in spite of this little difficulty.  So presumably 
the inaccuracy caused by having to estimate µ and ! rather than knowing their true values can’t be much.  
After all, he’s often done the same kind of thing elsewhere.  Therefore that probability computation of 
0.0027 should surely be at least  approximately correct. 
 
There’s only one way I know of finding out—yes, another computer simulation.  This one was quite easy to 
write.  All that was needed was to (a) generate a-few-at-a-time data from a normal distribution for various 
subgroup sizes and baseline lengths (the number of time-points used in the calculations), then (b) compute 
the control limits for an  X

!
- chart  in the usual way as described in Part B (pages 21–22), and (c) in each 

case, compute the probability of a subsequent value of X!  falling outside those control limits. 
 
Obviously, except for the very occasional fluke, every set of data will produce a different X!

!
 and a differ-

ent  R,
!

 and thus a different probability.  These probabilities can then be collected into a histogram, and the 
histogram can be investigated to see if there is any sense in claiming that the probability of a point falling 
outside the limits is 0.0027. 
 
Full details of this simulation study and the results it produced are provided in Section 4 (pages 68–70). 
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3.  “Control-chart constants depend on normally-distributed data, so unless your data 
are normally distributed your control chart isn’t valid.” 

 
As observed on page 57, the familiar 2.66 does depend on the assumption that we have normally distri-
buted data (in conjunction with Shewhart’s 3!-guidance).  The dependence arises since the conversion 
factors h tabulated on page 20 depend on that assumption.  With moving ranges effectively being sub-
groups of size two, the relevant value of h is 1.128 so that   MR

——
 ÷ 1.128 becomes a “valid” estimator of ! 

under that normality assumption.  The 2.66 then arises as the result of dividing 3 by 1.128 since this makes 
the resulting control limits consistent with Shewhart’s 3!-guidance.  By “valid” in this context is the impli-
cation that the estimator is equal to ! “on the average” in the long term, making it a so-called “unbiased” 
estimator of !;  there is more discussion on this matter on page 82 in the Technical Section.  However, 
being correct on the average in the long term doesn’t really say much about how close to ! we expect it to 
be in the short term, i.e. on the occasions when we actually use it!  So my initial aim when writing this first 
of the two computer simulations was to find out how this estimator actually behaves in practice. 
 
I therefore wrote a program to generate a large number of series of data from a normal distribution having 
! = 1, and in each case calculate   MR

——
 ÷ 1.128.  I chose to use baselines (series-lengths) of 12 and to gener-

ate 10 million such series.  The program then drew a histogram of those 10 million estimates.  That histo-
gram is shown at the top left of page 67 and, as you can see, the values of the estimator varied from below 
0.5 to above 2.0.  That may well strike you as rather wider variation around the true value of ! = 1 than you 
might like.  However, to substantially reduce that variation would require a much longer baseline.  There are 
many arguments as to why that’s undesirable.  Some reasons are discussed in detail in Section 1 of Part F 
(pages 71–74).   A further reason which is not raised there is that, unless data are arriving thick and fast 
(impossible with many processes), there will a considerable delay before the control chart can begin to be 
used.  As yet a further objection, there’s a law of decreasing returns in operation here: for example, to halve 
the width of this histogram would require quadrupling the baseline length to 48—wholly unsatisfactory for 
the numerous reasons just referred to.  However, that whole issue is another matter.  We are simply con-
cerned at the moment with the Mathematical Statistician’s claim that, because that 2.66 figure depends on 
the assumption of a normal distribution, this method is “not valid” if the data do not fit that assumption. 
 
There’s an obvious way to examine this (without raising the tricky matter of exact stability not being feasi-
ble!).  And that is to modify the program so as to generate data from distributions other than the normal dis-
tribution and take a look at those resulting histograms.  I used the same three distributions as in the simula-
tion study on the Central Limit Theorem (pages 51–54): the uniform distribution, the unsymmetric triangular 
distribution and the exponential distribution, each being in a version with ! = 1 for ease of comparison with 
the initial normal version.  You’ve seen pictures of these distributions on pages 52–53 in Part D but, for your 
convenience, they are illustrated again on the next page along with the normal distribution for comparison.  
The shapes of these three distributions are so different from each other (as well as from the normal distri-
bution itself) that examining the behaviour of   MR

——
 ÷ 1.128 as an estimator of ! in such a variety of cases 

would appear to be a suitably severe test of its usefulness. 
 
The resulting histograms are shown on page 67.  Now, presumably if there were any truth in the notion that 
normality is necessary for the standard method of constructing control charts for one-at-a-time data to be 
useful, the top left histogram for the normal distribution should stand out as representing “good” behaviour 
while the others should be clearly “bad” in comparison.  But, to put it mildly, such evidence is not easy to 
see!  Despite its lack of symmetry, the triangular case appears to be virtually identical to the normal case 
while the uniform case is just a bit superior to the normal case!  The exponential distribution’s histogram is 
a little wider but, to be honest and seeing how incredibly different that shape of distribution is from the nor-
mal distribution, I was pleasantly surprised to see how similar to the others its histogram turned out to be.  
The overall conclusion from this simulation exercise surely has to be that the claim of data needing to be 
normally distributed in order to use the 2.66  MR

——
 method for constructing control charts lacks credibility. 
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4.  “If your data are normally distributed then the probability of a false signal is 0.0027” 
 
There was a fairly full introduction to this simulation study on pages 63–64 and so I can now move straight 
into the details of the study. 
 
The main question for me to consider was what size of subgroups should I try and how many subgroups 
should I use in calculating the control limits?  Since you have now seen something of the Japanese Control 
Chart in Part B, I decided to be initially guided by what the Japanese workers did.  Investigating their chart 
which, as you will recall, used subgroups of size n = 4 throughout, it appeared that they generally used 
between 10 and 15 subgroups to compute the limits.  Therefore I chose to use 12 subgroups of size 4 in 
the simulation.  Next, although n = 4 is quite a common choice of subgroup size, I decided to repeat the 
simulation twice:  once with n = 2 and then with n = 6.  (It is rare to find people using subgroups any larger 
than 6.)  After a little trial and error I found that to use one million replications each time was sufficient to 
produce very clear pictures.  The resulting histograms are shown on the next page, and I have clearly 
marked the 0.0027 probability on the horizontal axes. 
 
So what was all this about normality of the data implying that the probability of a false signal is 0.0027?!  
The histograms are very spread out.  As you can see, I chose a horizontal axis which stretches from zero 
probability right up to 0.025 (nearly ten times 0.0027) and even that was insufficient to cover all the results! 
 
After seeing these histograms, I could imagine some statisticians complaining that to use only 12 sub-
groups for computing the limits was insufficient.  I therefore repeated the whole simulation using 40 sub-
groups instead.  40 subgroups is a far larger number than most people use in practice.  Those histograms 
are shown on page 70. 
 
At least, with these latter histograms, one can see some evidence of the one thing we know about the 
values of the probability of a false signal.  We can actually see that it is indeed feasible for the probability of 
a false signal to have a (very) long-term average of around 0.0027—admittedly not so with subgroups of 
size 2 but looking not unlikely with subgroups of size 4 or 6.  However, this is already using far more data 
than is at all usual in practice.  The disadvantages of using long baselines with subgrouped data are very 
much the same as with one-at-a-time data: recall that the latter are the subject of the first part of the Tech-
nical Section which follows on page 71. 
 
Quite simply, if considering the probability of a false signal when using an  X

!
- chart,  even with 40 sub-

groups (way beyond what is usual), really all that can be said about that probability is that it is likely to be 
less than somewhere between 0.01 and 0.02 depending on the size of the subgroups. 
 
The nonsense of claiming that that probability is 0.0027 is surely plain for all to see. 
 
The control chart as Shewhart created and developed it does not have “a fine ancestry of highbrow statisti-
cal theorems”.  But it does work. 
 
 
 
If you have read Balaji Reddie’s “Contributions”, particularly his pages 32–33 in “Some Lessons from 
History”, you will know that some of the content here has been based on an article that I wrote around 20 
years ago:  it was titled Two Superstations.   A subsequent article was titled More Superstitions.  However, 
unlike what we have covered here, that further article involved not control charts but the topic known as 
“six-sigma” quality.  Despite this, Balaji was very keen that I also make this article available to 12 Days to 
Deming students since he had found it to be of particular interest to his own students and other contacts.  
If you also might be interested, you will find it beginning on Appendix page 43. 
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PART F:  TECHNICAL SECTION 
 

1.  Length of the baseline 
 

When introducing control charts (for one-at-a-time data) to delegates at my seminars, reactions were usu-
ally very positive, even from those who started out by saying such things as ‘I can’t do Statistics’ or, worse 
still, telling me in advance that they hated the subject!  A little while later there were instead expressions of 
relief, even surprise, when they discovered how straightforward the technique is, how relatively simple are 
the calculations involved and, before long, how they were able to interpret what the charts were telling 
them.  As you might imagine, discussions on a set of processes such as those on Day 3 page 19 were 
exceedingly helpful for the latter.  Further, the delegates could usually quickly understand the wisdom of 
basing the measurement of variation in an ongoing process on moving ranges, even those who were famil-
iar with the standard deviation through some basic course on Statistics. 
 
The one thing they often remained understandably uneasy about was the matter of choosing the baseline, 
i.e. the number of data to use for computing the control limits.  The kind of guidance that I gave them might 
still not satisfy them—they might want to know the reasons for my guidance.  It may well be that the same 
is true of you.  If so then I hope this discussion will provide you with some thoughts and information that 
will be helpful to you when you are faced with deciding what length of baseline to try.  
 
There was some brief discussion on Day 3 about the length of the baseline in Technical Aids 8 (page 17) 
and 9 (page 27).  In practice, the choice of baseline length has to partly depend on how quickly the data are 
coming in and, if slowly, how soon you want to make at least a tentative start on the control chart.  There 
are no “rules” on this matter.  But for broad guidance I’d usually suggest, say, maybe 12 to 15 if the data 
are coming in fairly quickly (e.g. as in the Funnel Experiment), or if rather slower then perhaps around 10.  
Monthly data are of course rather a pain—perhaps initially just 5 or 6 there.  
 

In the case-study that I retold in ST, Don Wheeler did once use a baseline of length 4—but that was when 
there were only four data-points before the process was deliberately changed—what else could he do?!   

 
If you have a conventional Statistics background, you may well be a little startled by how short my sug-
gested baseline lengths are.  The general sense in conventional Mathematical Statistics concerning sample 
sizes used when involved with methods of statistical inference (such as hypothesis testing and forming 
confidence intervals which were briefly introduced in the “crash-course” on pages 54–55) is that “the more 
data, the better”.  The conventional statistician may have carried out calculations on how many data are 
needed to estimate a parameter (such as the mean) to within a certain precision with some high degree of 
confidence—and come up with sample sizes in the hundreds if not the thousands!  The same can happen 
in computations concerned with the “power” of hypothesis tests.  As usual, other readers who are not 
familiar with these matters do not need to know about them!  For here we are dealing with an entirely dif-
ferent kind of problem.  In those traditional types of calculations it is effectively assumed that there is a vir-
tually limitless pot of data available, totally unlike our basic situation here of data being generated (often 
rather slowly) over time.  In those mathematical exercises, the object is to get a correct number.  But heed 
well what Don Wheeler has repeated dozens of times in his own seminars:  “We are not so much concerned 
with getting right numbers:  we are concerned with taking right actions.”  And that is a very different—and 
much more important—matter. 
  
If and when you have the time, you could gain some useful experience quite quickly about the pros and 
cons of using different lengths of baseline by carrying out some experimentation on the Funnel Experiment 
data that you generated in Major Activity 3–h.  Try using some different baselines from whatever you chose 
in Part A of these Optional Extras, and see what happens.  That is, examine the ways in which different 
baseline lengths may affect your judgment of what is happening with the four Rules, and when. 
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As you know by now, I have always been quite keen on using computer simulation studies when faced with 
problems that are difficult or impossible to solve just by Mathematics: simulation studies do not “solve” 
problems but they can throw light on them.  On pages 82–84 in the second edition of my book of Statistics 
Tables (which I’ve been abbreviating by ST), I included details of a simulation study that I carried out to help 
me get some “feel” for the pros and cons of different baseline lengths used in computing control limits for 
the usual type of control chart using one-at-a-time data.  I’ll discuss below some of the results which came 
from that simulation study. 
 
However, I should first point out that simulation studies do have some similar drawbacks to mathematical 
solutions, in particular that it is necessary to make some choices and assumptions in the details to be used 
in the design of these studies—just as that is necessary in order to carry out mathematical derivations.  (So 
yes, e.g. I confess that my simulation study did involve generating data from normal distributions—which 
were introduced in the “crash-course”).  Of course, as with mathematical derivations, there is no expecta-
tion that the results obtained will exactly reflect what will happen in practice when such choices and 
assumptions do not hold.  However, with choices and assumptions that are made with an eye on the kind 
of things which might be expected to approximately reflect practical situations, it is reasonable to hope that 
the main results from both Mathematics and computer simulations will at least roughly indicate the general 
lines of what will happen in practice—otherwise, of course, they’re not much use!  The assumption that       
I needed to make in this study was that the process remained in statistical control throughout the baseline 
period.  However, I shall also briefly discuss the situation where this assumption does not hold. 
 
Firstly I’ll look at the possibility of “false alarms”, i.e. signals that a special cause exists when in fact the 
process has remained stable.  False alarms can be costly.  A signal, i.e. a point outside the control limits, is 
a signal that guides you start looking for a special cause.  And that can be time-consuming and expen-
sive—and even more so if there is no special cause to find, and then perhaps even kid ourselves that we’ve 
found one!  So here’s the first of two rather similar questions for the simulation study to tackle: 
 
(A)  How often will false alarms occur when the control chart is being used “live”? 
 
With the assumptions made in the simulation study, and with the variety of baseline lengths as shown, here 
are the percentages of false alarms (i.e. signals that occur if the process remains stable) when the control 
chart is “up and running” (i.e. after the baseline period ends): 
 
    Baseline length    4   6  10  15  20  30  50  100 
    Prob of any false alarm(s)  7.65% 4.28% 2.17% 1.34% 0.99% 0.68% 0.48% 0.35% 
 
As is immediately obvious, that percentage is high for short baselines but improves as the baseline length 
increases.  This, of course, coincides with the conventional statistician’s almost automatic expectation—
and for similar reasons.  The longer the baseline, i.e. the greater the number of data from which the control 
limits are computed, the closer they will be to those which would have been computed directly from the 
normal distribution that is being assumed, and so the better they will “fit” the data that are being generated.  
So that’s no surprise, and I’ll therefore move straight on to the next question. 
 
(B)  What is the likelihood of there being any signals (i.e. false alarms) during the baseline period? 
 
Let’s look straightaway at results from the simulation study: 
 
    Baseline length    4  6  10  15  20  30  50  100 
    Prob of any false alarm(s)    0    1.3% 2.1% 3.5% 4.8% 7.4% 12.2% 23.3% 
 
So yes, it is possible to have signals within the baseline period.  Indeed, if you read Part A of these Optional 
Extras then you will have seen some on page 13 when considering Rule 4 of the Funnel.  But, of course, 
those were justified signals: the process was already out of control.  And fortunately that is almost always 



6%5(#7/#8*9:-,9%2#'*9(,)-#

!"#$%&'()*+#,'-)).))"'/0)"%))

the case if you get a signal within the baseline.  But not always, as the short table of probabilities shows.  
So, if you are doubtful about whether a signal is or is not a false alarm, you might be sensible to wait and 
recompute the control limits after you have recorded, say, another two or three data, and then check again.  
That’s especially the case if you are using a particularly short baseline.  My reason for that advice is that a 
false alarm within the baseline is liable to be even more costly than a false alarm after the baseline period.  
For, of course, the control limits are supposed to guide us about when the process goes out of control—
but now we have an indication that the process is out of control already!   So not only would time and 
money be fruitlessly spent on searching for the reason for that signal—it would be illogical to even continue 
using this control chart. 
 
As you can see from the short table of probabilities, the probability of one or more false alarms occurring 
during the baseline steadily rises as the baseline length increases.  Because of the problems that such false 
alarms cause, this immediately indicates that it is unwise to use a very long baseline.  Seeing that, as just 
pointed out, it would be illogical to extend the control limits beyond the baseline and continue to use the 
chart if there are already any points outside the limits during the baseline, my computer program was writ-
ten to reflect common practice by only including those cases where the chart was clear of signals during 
the baseline for the purposes of answering Questions (A) and also (C) below. 
 
But why does the probability of false alarms occurring within the baseline behave in the way shown?  In 
particular, why is the probability actually zero with that really short baseline of 4?  Remembering that the 
control limits are calculated directly from the data that are within the baseline (using that familiar method 
using the 2.66), it turns out to be arithmetically impossible for any of the four values to lie outside those 
control limits.  If you like, try it for yourself with any set of four numbers that you care to choose:  never 
mind how weird a selection of numbers you’d like to dream up, you’ll find that that remains true!  But it 
does become just possible with a baseline length of 5 and then, as you’ve seen, ever more possible with 
longer baselines.  Why is that?  One obvious reason is that, the longer the baseline, the more opportunities 
there are for a false alarm to occur within it.  
 
So, in summary, we had evidence with Question (A) that to use very short baselines is dangerous, and now 
we have evidence with Question (B) that to use very long baselines is also dangerous!  Such conflicting 
evidence is not unexpected: there are conflicting interests in play here and so the conclusion is that we 
shall have to finish up with some kind of compromise between them.  But what will guide our choice of 
such a compromise? 
 
Our third question may help.  Here, instead of false alarms, we focus on justified signals, i.e. points which 
fall outside the control limits after the process has changed.  Then, obviously, we would like to get a signal 
without much delay so that the search for a special cause is (correctly) triggered sooner rather than later.  
To examine this we’ll use a traditional method for describing the sensitivity of a control chart which is to 
compute the average number of data occurring after a process change up to and including when the chart 
gives its first signal; this is known as the Average Run Length (ARL).  So our third question is: 
 

(C)  How do the Average Run Lengths behave for different lengths of baseline? 
    
Remembering that we are generating data from a normal distribution, I considered three cases of a sudden 
process change: a shift in the process average by an amount of !, 2! or 3!, ! being the standard deviation 
of that normal distribution.  Whereas the answers to the first two questions might not have surprised you, 
these results may do so: 
 
Baseline length     4    6   10   15   20   30   50  100  
ARL following shift !  7.1 10.1 14.9 19.6 23.1 28.0 33.8 39.7 
ARL following shift 2!    3.21  3.73  4.35  4.83  5.14  5.53  5.91  6.25 
ARL following shift 3!   1.888  1.949  1.992  2.016  2.028  2.040  2.049  2.055 
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So the ARLs steadily increase (worsen) as the baseline gets longer.  This might indeed initially appear rather 
surprising since the conventional statistician’s “obvious” argument is that, the more data we use to derive 
the control limits, the more “accurate” and therefore “better” the chart will be.  But that argument reflects 
the Mathematical Statistician’s almost automatic way of thinking rather than considering what actually hap-
pens in practice.  Remember that, in line with common and sensible practice, one does not usually con-
tinue with some newly-computed control limits if there are any points outside those limits during that base-
line.  As already argued, what would be the logic of extending the control limits into the future if we have 
been sent a signal that the process is likely to be out of control already?  So, reflecting that “common and 
sensible practice”, recall that in the computer simulation I did not continue with any such cases as regards 
answering Questions (A) and (C). 
 
Let’s consider in more detail what happens if we are using a long baseline.  Clearly, the longer the baseline, 
the greater is the chance that a signal will occur during it—as has already been pointed out, there are then 
simply more opportunities for it to do so (whether or not the process stays in control).  But if the process 
does actually stay in control throughout the baseline then that signal is, of course, a false alarm.  We’ve 
seen that the results for Question (B) confirm the increasing chance of such a false alarm with longer base-
lines: in fact, except for the very shortest baselines, those percentages increase by about 0.25% for each 
extra data-point included in the baseline.  So, as examples, if the baseline-length is 40 then there is about a 
1-in-10 chance of there being such a false alarm, while if the baseline-length is 100 then the chance rises to 
almost 1 in 4.  Now, naturally the control limits will vary when computed from different sets of baseline 
data: with some data-sets the gap between the limits will be “fairly typical”, but with others the gap will be 
either relatively narrow or relatively wide.  So in which cases are those false alarms within the baseline (i.e. 
the cases which will not be considered in Question (C)) most likely to occur?  Surely it will be those where 
the gap between the control limits is relatively narrow.  But those discontinued cases are the very ones that 
would have been the most likely to produce signals when the process goes out of control!  That’s the 
combination of theory and practice which explains why the ARL increases as the baseline gets longer. 
 
Thus, whereas Questions (A) and (B) produced evidence in favour of longer or shorter baselines respec-
tively, I suggest that the evidence in Question (C) provides a valid casting vote!  Very short baselines need 
care because of the evidence in (A), but otherwise the weight of evidence points to the wisdom of using 
reasonably short baselines rather than the longer ones that may appeal to a conventional statistician. 
 
Finally, recall where we saw our first control chart: it was in the Red Beads Experiment.  The control limits 
there were computed from all 24 of the available data.  So why don’t we forget all this stuff about baseline 
lengths and use “all of the available data” in “live” control charting? Of course, that would mean recomput-
ing the control limits every time a new data-value arrives.  That would be tedious manually, but a computer 
could easily do it for us.  The reason we don’t is, believe it or not, that this is liable to actually reduce the 
ability of the chart to produce useful information.  As evidence of that, I’ll finish here with the following sad 
memory: 
 

This recalls the occasion when a delegate came up to me with tears of gratitude after I had emphasised 
this point in the seminar.  Her company had installed some quality-control software on their computers.  
This software had been written to use “all the available data” in the manner I have just described.  I repeat 
that It is, of course, very easy and not at all tedious for a computer to immediately recompute the control 
limits after each new reading arrives.  The trouble was that the lady’s process was slowly trending upward 
(which was a very undesirable state of affairs with her process) but the consequence of using that soft-
ware was that the control limits also kept trending upward—and so she never obtained a value above the 
(current up-to-date) Upper Control Limit because it also kept moving further up and away!  Her boss 
refused to consider any action unless the chart produced an officially out-of-control signal.  So it was my 
poor delegate who was increasingly being blamed for the worsening behaviour of this process. 
 

On Day 7, Deming cited “We installed quality control” as an “Obstacle to the Transformation”.  There’s 
always more to learn! 
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2.  “Expected” values—the great misnomer! 
 

NB  Some of the mathematical material on this topic and others in this Technical Section may be seen 
as overly basic by those who are experienced in Mathematical Statistics.  But remember that this 
material is all written for a quite general audience—so feel free to skim over any of it that is already 
familiar to you. 

 
Some more notation (mathematical shorthand) 
 
Let’s start by revisiting the development of the two illustrations on pages 37–42 in Part D of (a) tossing two 
coins and counting the number of Heads and of (b) throwing three dice and counting the number of sixes.  
I said there that these were simple examples of what are known as binomial distributions.  In the final sec-
tion of these Optional Extras I shall develop some main ideas about the whole family of binomial distribu-
tions. 
 
We also saw that, with the usual symmetry assumptions (i.e. a 50-50 chance of Head or Tail at each toss of 
a coin and a 1 in 6 chance of getting a six when a die in thrown), we finished up with the following proba-
bility distributions: 
 
    Probability of no Heads      =    1

4  

    Probability of 1 Head and 1 Tail    =     

1
2  

    Probability of 2 Heads       =    1
4  

 
and 
 
  Probability of 0 sixes  =  125216   Probability of 1 six      =  75

216   
  Probability of 2 sixes  =  15

216   Probability of 3 sixes   =  1
216 . 

 
We then moved on to expressing the mean µ and the variance !2 of the first of these distributions as 
 

µ   =   0 ! 
1
4   +  1 ! 

1
2   +  2 ! 

1
4    =   1 

 
and 
 

!2   =   (0 – 1)2 ! 
1
4   +  (1 – 1)2 ! 

1
2   +  (2 – 1)2 ! 

1
4    =   

1
2 .  

 
If you then carried out the voluntary exercise on page 42 of computing the mean and variance of the 
second distribution, this is what you should have obtained: 
 

µ   =   0 ! 
125
216   +  1 ! 

75
216   +  2 ! 

15
216   +  3 ! 

1
216    =   

1
2  

 
and 
 

!2   =   (0 – 
1
2)2  ! 

125
216   +  (1 – 

1
2)2  ! 

75
216   +  (2 – 

1
2)2  ! 

15
216   +  (3 – 

1
2)2  ! 

1
216    

 
=  (! 1

2)2  ! 
125
216   +  ( 12)2  ! 

75
216   +  (32)2  ! 

15
216   +  (52)2  ! 

1
216  

 
which, after some careful arithmetic, comes out as !2 = 

5
12 .  

 
If we denote the random variable concerned in each case by X then we have been calculating µ and !2 by 
 

µ    =   the sum of all values of {x multiplied by the probability that X = x} 
 

and 
 

!2   =   the sum of all values of {( x – µ )2 multiplied by the probability that X = x}. 
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As you might suspect, there exists some mathematical shorthand for such expressions.  Typically it’s 
 

µ    =   x. Prob (X = x )!   and   !2   =  
 

2
x !µ( ) . Prob (X = x )"  .  

 
Obviously enough, there I have abbreviated “the probability of” by “Prob (   )”.  And, as you can see, “" ”  is 
shorthand for “the sum of all values of”.  (Confusingly, " is actually the capital Greek letter “sigma”!)  Fur-
ther, because “x” is the mathematician’s favourite letter and so is likely to appear in many such expres-
sions, in order to avoid yet further confusion I am now abbreviating “multiplied by” by just a simple dot 
rather than the usual multiplication sign which, of course, looks very much like the letter x!  Indeed, often 
the dot is omitted as long as that doesn’t cause any ambiguity.  All of this is very common notation in the 
books, and I have introduced it here since we shall need it in some of what follows. 

 
“Expected” values 
 
As you know, a concept that we have used quite a lot in Parts C and D is that of what happens “in the long 
term” when we consider random samples getting larger and larger, in particular “long-term average values” 
and “long-term proportions”.  We developed the idea of the probability of an event as being the long-term 
proportion of times that the specified event occurs when considering random samples of, say, trials of 
some operation or procedure.  Or if we measure or count something—let’s denote it by X (again, the math-
ematician’s favourite letter!)—then the long-term average X!  of the recorded values of X gives us the “true 
mean” µ of X’s probability distribution which, as we have now seen, can be expressed as 
 

µ   =   x. Prob (X = x )  .!  
 

And then we also had the variance !2 expressed as 
 

2
x !µ( ) . Prob (X = x )"  .  

 
We shall make further use of this concept of long-term average values in this Technical Section.  But “long-
term average value” is also rather a mouthful.  And so, not surprisingly, there’s also a standard notation 
(shorthand) for that!  The notation is “E [   ]”.  So, for example, µ can now be expressed as E [ X ].  Similarly, 
!2 can be expressed as E [ (X – µ)2 ].  This concept can be generalised to any so-called function of X, g(X) 
say, such as g(X) = X2 or g(X) = ( X + 1)( X + 2 )—remember the latter means ( X + 1) multiplied by ( X + 2).  
A “function” of X simply means anything that can be evaluated once the value of X is known.  So then 
 

E [ g(X ) ]   =   g(x ). Prob (X = x )! . 
  
Unfortunately, that E [  ] notation is an abbreviation for surely one of the biggest misnomers in the whole 
subject of Statistics!  It stands for “Expectation” or “Expected Value”.  What’s unfortunate about that is that 
E [ X ] is very often either a very rare value or sometimes an impossible value of X, so it seems rather odd to 
then call it the expected value of X!  The same unfortunate fact is also true for the Expected Value of most 
functions g(X) of X. 
 
With a discrete distribution, sometimes E [ X ] is a possible value of X.  For example, when we considered 
tossing two coins and counting the number of Heads, then µ, i.e. E [ X ] (the long-term average value of X), 
turned out to be equal to 1.  However, when we then moved on to considering the number of sixes when 
three dice were thrown, we had E [ X ] as being equal to  

1
2—hardly  an “expected” value of a number which 

can actually only be 0, 1, 2 or 3!  And if a random variable X has a continuous probability distribution then 
we reached the conclusion in Part D that the probability of X being equal to any specified value is zero—so, 
again, whatever µ turns out to be, it will hardly be an “expected” value of X! 
 
However, the language and the notation of expected values is so common—pretty much universal—that 
we are stuck with it.   So let’s get on and use it.  As you will soon see, expected values (long-term average 
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values) are very helpful in explaining some of the mysteries that have emerged both in the main text and 
earlier in these Optional Extras. 

 
Combining expected values 
 
A straightforward yet vital property of expected values is that they are additive.  If we express this property 
in terms of “long-term averages” you will soon see how straightforward it is.  Suppose we are considering 
the sum of two random variables: X + Y.  Then surely the long-term average value of X + Y must be equal to 
the long-term average value of X plus the long-term average value of Y.  Think about it—how could it be 
otherwise?  So simple, yet so incredibly useful: E [ X +Y ] = E [ X ] + E [ Y ].   And it’s not restricted to adding just 
two random variables together: the same thought-process works for the sum of 3 or 4 or any number of 
random variables—or, indeed, functions of random variables!  It also includes subtraction rather than just 
addition:  e.g. E [ X – Y ] = E [ X ] – E [ Y ]. 
 
So, if expected values can be added together, perhaps a natural follow-on question is whether they can be 
multiplied together.  That’s not quite so straightforward: the answer is sometimes Yes and sometimes No.  
But, as an interim step, what happens if we want to find the expected value of some multiple of a random 
variable, i.e. what is E [ c X ] where c is some constant value, e.g. 2?  In this case there is no difficulty.  Again 
thinking of long-term average values, it is surely obvious that if we double all of our sampled values of X 
then we also double their average.  Actually, we could have used the additivity property to verify this parti-
cular case, i.e. E [ 2 X ] = E [ X + X ] = E [ X ] + E [ X ] = 2 E [ X ].  But the general result is true as well: E [ c X ] is equal 
to c E [  X ] for any value of c. 
 
But what about the expected value of the product of two random variables?  (“Product” is the jargon for 
multiplying two or more things together.)  So is E [ X Y ] equal to E [ X ]. E [ Y ]?  In order to answer that question 
we need to introduce yet more statistical terminology, but at least in this case the statistical interpretations 
of the words used are pretty consistent with their ordinary English meanings.  It is the concept of the inde-
pendence or otherwise of two (or more) events. “Independence” of two events simply implies that the 
occurrence or non-occurrence of either event has absolutely no influence on the occurrence or nonoccur-
rence of the other one.  The statistical definition of independence of two events A and B is simply that the 
probability of both events occurring is equal to the product of their individual probabilities, i.e. in shorthand, 
Prob ( A and B ) = Prob ( A ) . Prob ( B ) ; this is often called the “simple multiplication rule”.   
 
Now, the fact that the statistical definition of independence of events is true of events that are truly inde-
pendent of each other in the ordinary English sense of the word is so obvious that we have already used it 
several times in this material without comment!  An early instance was in Part D near the bottom of page 41 
where, having assumed that there was a one-in-six chance of a six showing when a die was thrown, we 
immediately deduced the probability distribution of the number of sixes showing when three dice were 
thrown.  The first probability calculated there was of all three dice showing a six:  
 
             Prob ( 3 sixes ) =   Prob ( six on the first die and six on the second die and six on the third die )   
   =   Prob ( six on the first die) . Prob ( six on the second die ). Prob ( six on the third die )  
    =   16  ! 

1
6  ! 

1
6   =  

1
216 .  

 
In other words, we were (quite reasonably!) assuming that the three events “six on the first die” and “six on 
the second die” and “six on the third die” were all independent of each other and thus implicitly using the 
multiplication rule for independent events. 
 
But back to the original question: is the expected value of the product of two (or more) random variables 
equal to the product of their individual expected values?  I.e., in the case of two random variables, X and Y, 
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is E [ X Y ] equal to E [ X ] . E [ Y ]?  As you might expect from the build-up, (a) there is an entirely analogous 
concept of the independence of random variables to the above concept of independence of events, and   
(b) the answer to the question about the expected value of a product of random variables is Yes if the ran-
dom variables are independent (but otherwise No, except by an occasional fluke).  If that seems obvious to 
you then you can move straight on to this page’s final short paragraph.  Otherwise, I’ll sketch a proof for 
you. 
 
In order to prove this important multiplication rule for expected values, i.e. that if X and Y are independent 
random variables then E [ X Y ] = E [ X ] . E [ Y ], it’s easiest to first verify it for a couple of very simple discrete 
random variables.  This will show a pattern that is then easily extended to more general cases (although 
rather lengthy to write down). 
 
So let’s suppose X can take on just two possible values x1 and x2 with probabilities p1 and p2 respectively, 
and similarly Y can take on just two possible values y1 and y2 with probabilities q1 and q2 respectively.   
Then, summing over all possible outcomes, we have 
 

    E [ X Y ]  =   xy. Prob (X = x  and  Y = y  )!  

    =    x1 y1 . Prob ( X = x1 and Y = y1 ) + x1 y2 . Prob ( X = x1 and Y = y2 )  
     +   x2 y1 . Prob ( X = x2 and Y = y1 ) + x2 y2 . Prob ( X = x2 and Y = y2 ) 
 
which, if X and Y are independent random variables, can be rewritten 
 
        x1 y1 . Prob ( X = x1 ) . Prob ( Y = y1 ) + x1 y2 . Prob ( X = x1 ) . Prob ( Y = y2 )  
     + x2 y1 . Prob ( X = x2 ) . Prob ( Y = y1 ) + x2 y2 . Prob ( X = x2 ) . Prob ( Y = y2 ) 
 
which can then be cleverly rewritten as 
 

    { ( x1 . Prob ( X = x1 ) + x2 . Prob ( X = x2 ) } . { ( y1 . Prob ( Y = y1 ) + y2 . Prob ( Y = y2 ) } . 
 
Multiply out all the terms in that expression if you don’t believe me!  And this is indeed equal to E [ X ] . E [ Y ].  
As I said, that pattern of proof can be extended to any discrete probability distributions. 
 
The same result is true of continuous random variables.  But, of course, then we cannot use that same 
method of verification.  A similar approach to the proof can be developed but only in terms of the branch of 
Mathematics known as Calculus.  So, as I do not intend to also attempt to provide you with a crash-course 
in Calculus, I’m afraid you’ll just have to trust me!  
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 3.  Proofs and uses of expected values 
    
There are quite a few little results and a couple of big ones in this section.  The proof of later results often 
depends on one or more of the results proved earlier.  So, to keep track, it will be wise for me to identify the 
results in a way that will enable you to easily trace back.  I shall do that in red print on the right-hand side of 
the page. 
 
To begin with, let’s restate the results about expected values derived in the previous section.  First we had 
the additivity property.  We started with the simplest result that, for any random variables X and Y, we had 
E [ X +Y ] = E [ X ] + E [ Y ].  I then pointed out that this also works with subtraction and can be extended to more 
than two random variables and even to functions of them.  Here is a selection of simple additivity results: 
 

E [ X +Y ] = E [ X ] + E [ Y ];    E [ X – Y ] = E [ X ] – E [ Y ];  
         E [ X2

 +Y2
 ] = E [ X2

 ] + E [ Y2
 ];     E [ X + Y + Z + ... ] = E [ X ] + E [ Y ] + E [ Z ] + ...                        {E1} 

 
It is worth emphasising that these results are entirely general: they apply whether or not the random varia-
bles are independent. 
 
Then we had the simple and pretty obvious result about a multiple of a random variable: 
 
       For any (constant) value c, E [ c X ] = c E [  X ] .                                              {E2} 
 
Finally, there was the important multiplication rule: 
 
        If X and Y are independent random variables then E [ X Y ] = E [ X ] . E [ Y ] .                   {E3} 
 
Similarly to the additivity property, this is also extendable to more than two independent random variables. 
 
Next we shall derive some results about variances.  As you will recall, the variance !2 of a random variable 
X is defined as E [ ( X – µ)2 ] where µ = E [ X ] (and remember that ! itself is the standard deviation).  Firstly, 
we’ll find a useful alternative expression for !2. 
 
We have !2 = E [ ( X – µ)2 ] which, multiplying out ( X – µ)2, gives  
 
           !2 = E [ X2 + µ2

 – 2µX] . 
 
Using both {E1} and {E2} and the obvious fact that the expected value of a constant is simply that constant, 
this gives 
 
                                        !2  =  E [ X2 ] + E [ µ2

 ] – 2 E [ µ X ] = E [ X2 ] + µ2
 – 2µ . E [ X ]  , 

 
                         i.e.  !2  =  E [ X2 ] + µ2

 – 2µ2,  which gives !2  =  E [ X2 ] – µ2
 .       {V1} 

 
Secondly, let’s consider the variance of a multiple cX of X.  From {E2} we know that E [ cX ] = c E [ X ].  So, 
using {V1}, 
 
 the variance of cX  =  E [ (cX ]) ]2  – (E [ c X ])2  =  c2

 E [ X 
2 ] – c2 (E [  X ])2  = c2 (E [ X 

2] – c2 µ2 
 
         =  c2

 ( E [ X2 ] – µ2
 )  =  c2 !2 .                 {V2} 

 
This is, of course, consistent with the standard deviation being a measure of variability since, as you would 
expect, it gives the standard deviation of cX as c!. 
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Next, variances also have an additivity property.  However, it isn’t as all-embracing as {E1}: in general, it 
applies only to independent random variables.  So if X and Y are independent random variables then, using 
all of {E1}, {E2}, {E3} and {V1} we have 
 
 the variance of ( X + Y )  =  E [ ( X + Y)2 ] – (E [ X + Y ]) 

2 
 
    =  E [ X2

 + Y2
 + 2XY ] – (E [ X] +E[ Y])2 

 
    =  E [ X2] + E [ Y2] + 2E[XY]  –  {E [ X]2 + E [ Y]2 + 2 E [ X] E [ Y]} 
 
    which, since X and Y are independent, 
 
    =  E [ X2] + E [ Y2] + 2 E [ X] E [ Y])  –  {E [ X]2 + E [ Y]2 + 2 E [ X] E [ Y]} 
 
    =  E [ X2] + E [ Y2] + 2 E [ X] E [ Y])  –  E [ X]2 – E [ Y]2 – 2 E [ X] E [ Y] 
 
    =  (E [ X2] – E [ X]2) + (E [ Y2] – E [ Y]2) 
 
        i.e. the variance of ( X + Y )  =  the variance of X  +  the variance of Y.         {V3} 
 
Similarly to {E1}, this additivity property can be extended to three or more independent random variables. 
 
The purpose of producing all these relatively small results is to be able to prove some big results that have 
been quoted and used previously.  The first of these provides the variance of the mean X! of a random sam-
ple of n values of the random variable X.  As usual, we’ll denote the mean and variance of X by µ and !2. 
 
Previously we have regarded the fact that E [X! ] = µ as obvious directly through our considerations of long-
term sampling.  We could now instead effectively prove it using {E1}, {E2} and {E3}: 
 

    E [X! ]  =  E [ 1n X! ]  =  1n E [ X! ]  =  1n  E[X ]!   =  1n µ! . 
 

Remembering that the sum is over n terms, this is therefore simply 1n nµ  =   µ. 
 
However, rather than using the shorthand summation symbol ", I suspect that such lines of mathematics 
might be more easily understood by reverting to longhand!  So let’s denote our sample by X1, X2, ..., Xn and 
rewrite the above as 
 

 E [X! ]  =  E [ 1n (X1 + X2 + ... + Xn)]  =  1n E [ X1 + X2 + ... + Xn]  =  1n ( E[X1] + E[X2] + ... + E[Xn] ) 
 

                  =  1n ( µ+ µ + ... + µ)  =  1n nµ  =   µ.                                    {E4} 

 
Now let’s move on to the variance of X! .   Having obtained these recent results, this now turns out to be 
very easy to find by using {V2} and {V3}.  Abbreviating “the variance of” by “var”, and remembering that X1, 
X2, ..., Xn are all independent random variables having variance !2, we have  

  var (X! ) = var ( 1n (X1 + X2 + ... + Xn))  =  12n  var (X1 + X2 + ... + Xn)   

              =  12n {var (X1) + var (X2) + ... + var (Xn)} 

              =  12n ( !2+ !2+ ... + !2 )  = 12n n !2 . 
  
Thus we have proved the very important result (as used, in particular, in the statement of the Central Limit 
Theorem in terms of Z on page 51) that   

         the variance of X!  is 1n !2.                             {V4} 
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Finally as far as variances are concerned, let’s return to that mystery of why, given a random sample of 
size n, the sample variance s2 was defined with the divisor n –1 rather than n as might have been expected, 
i.e. 
 

2s = 1
n !1

  2(X ! X )" !
. 

 
Let’s now see why it is defined that way. 
 
Clearly, if we knew the value of µ, it would have made sense to use it in the expression for the sample vari-
ance rather than X! .  X!  is there because, in general, we wouldn’t know the value of µ.  Now, the role that 
we want s2 to play is as an estimator of the unknown value of !2, in the same way that we use X!  as an 
estimator of the unknown value of µ.  The difference between them is that, whereas with the “obvious” esti-
mator of µ, i.e. X ,!  we know it is true that E [X! ] = µ, the expected value of the “obvious” estimator of !2 
turns out to be slightly smaller than !2.  Very annoying!  What would have been true is that, in the unlikely 
event that we knew the value of µ and therefore were able to use it when estimating !2, all would have been 
well: yes, the expected value of the “obvious” estimator of !2 in those unlikely circumstances would indeed 
have been  !2.  That’s very simple to verify, so let’s do that first. 
 

E [ 1n
2(X ! µ)" ]  = 1n E [ 2(X ! µ)" ]  =  1n E [ (X1–µ)2 + (X2–µ)2 + ... + (Xn–µ)2 ] 

 

               =  1n ( E [ (X1–µ)2] + E [ (X2–µ)2] + ... + E [ (Xn–µ)2] ) 
 

               =  1n ( !2 + !2 + ... + !2 ) 
 
               =  !2. 
 

However, let’s now investigate E [ 2(X ! X )" !
] without any divisor for the moment.  

 
A useful trick here is to subtract and then add back µ within the brackets, like this: 
 

2(X ! X )" !
 =  

2(X ! µ ! X  + µ)" !
 =  

2{(X ! µ)! (X ! µ)}" !
  

 

            =  2{(X ! µ)" 2+(X ! µ) ! 2(X ! µ)(X ! µ)}!!
. 

 
I think it would be wise to return to longhand to sort this out.  It’s the amateur way, but also the safer way!  
So 

     2{(X ! µ)" 2+ (X ! µ) ! 2(X ! µ)(X ! µ)}!!
 

 
      =    (X1 – µ)2 + (X! – µ)2 – 2(X! – µ)(X1 – µ) 
         + (X2 – µ)2 + (X! – µ)2 – 2(X! – µ)(X2 – µ) 
         +             ...             ...             ... 
         + (Xn – µ)2 + (X! – µ)2 – 2(X! – µ)(Xn – µ) . 
 
Let’s add up these terms column by column.  The first column is (X1 – µ)2 + (X2 – µ)2 + ... + (Xn – µ)2.  The sec-
ond column’s terms are all the same, and so their sum is simply n (X! – µ)2 .  The final column has 2(X! – µ) 
as a factor throughout, and so the sum is –2(X! – µ) ( X1 + X2 + ... + Xn – nµ

 

). 
 

And now let’s find the expected value of 2(X ! X ) ." !
  It’s the sum of the expected values of all those terms. 
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The expected value of the first column is E [ (X1 – µ)2 ] + E [ (X2 – µ)2 ] + ... + E [ (Xn – µ)2 .  But every one of these 
n terms is simply !2, and so therefore their sum is n!2.  Next, the expected value of the second column is           
E [ n (X! – µ)2 ] = n E [ (X! – µ)2 ].  But that’s just n times the variance of X! which we know from {V4} to be !2/n. 
So the expected value of the second column is just !2.  The sum of the values in the third column includes 
X1 + X2 + ... + Xn which is, of course, equal to nX .!  So the total in the third column can now be expressed as 
–2(X! – µ) ( X1 + X2 + ... + Xn – nµ

 

) = –2(X! – µ) (nX ! nµ),!
 i.e. simply !2n 2(X !µ) .!

  But the expected value of that 
is clearly –2n times the variance of X ,!  so this simply boils down to –2!2.  The expected value of the whole 
expression is therefore n!2 + !2 –2!2 = ( n – 1 ) !2.  That’s why the sample variance is defined as 
                     

2s = 1
n !1

2(X ! X )" !
: 

 
it’s so that E[s2] = !2.  As we saw on page 65, an estimator whose expected value is equal to the thing that 
it is trying to estimate is known as an unbiased estimator.  Mathematical statisticians are understandably 
keen to have unbiased estimators—as the name they’ve given it suggests!  And, in fact, it is the aim to 
devise unbiased estimators which underlies most of the previously mysterious facts that have been quoted 
both in the main text and earlier in these Optional Extras, particularly involving those “control-chart con-
stants”.  In light of that, we’ll take another look in the next section at all of the control-chart constants that 
we’ve seen. 
 
However, to conclude here, there was yet another example of the use of an unbiased estimator in Part B of 
these Optional Extras: see page 20.  It was adjustment of the MAD to make it comparable with, i.e. on the 
same scale as, the standard deviation.  Yes, as indicated there, in the same way that we now know that s2 
is an unbiased estimator of !2, we need to scale up the MAD by a factor of 1.253 in order that its square 
also becomes an unbiased estimator of !2.  The only difference is that, whereas the divisor of n – 1 always 
serves the purpose using s2, the computation of that 1.253 factor is derived using the normal distribution 
assumption, as is the case with almost all of the control-chart constants.  This is for the usual reason that 
the mathematics just can’t be carried out without some such assumption.   

 
There are two “asides” worth mentioning here. 
 
First, the fact that s2 is an unbiased estimator of !2 might sound impressive.  But, actually, unbiasedness 
is not a particularly strong property for an estimator (although Mathematical Statisticians are pretty keen 
on it).  All it says is, of course, that the estimator gets closer and closer to the thing being estimated as     
n ! 1).  But our sample sizes n are usually rather smaller than that!  The property of unbiasedness says 
nothing about how close the estimator is likely to be to the item of interest when using ordinary sample 
sizes.  Nevertheless I guess that, if you were fortunate enough to be dealing with very large samples, you 
would naturally regard it as beneficial for the unbiasedness criterion to be satisfied rather than for the esti-
mator to get closer and closer to something else in the long term! ))
Secondly, the fact that s2 is an unbiased estimator of !2 does not imply that s is an unbiased estimator 
of !.  Unfortunate as it may be, the property of unbiasedness does not carry over when operations such 
as taking the square root or squaring an estimator are involved.  The fact that the sample variance has 
long been defined in such a way that the sample standard deviation is not in general an unbiased estima-
tor for ! is yet a further indication of the Mathematical Statistician’s preference for the variance rather than 
the standard deviation, despite the fact that it is the standard deviation which is the version that directly 
reflects variability, i.e. the characteristic in which we are interested.  However, when we now move on to 
looking at control-chart constants, the criterion used is that they are based on unbiased estimators for ! 
rather than for !2—a contrast which I suggest is further evidence of how control charts have been devel-
oped according to what makes the better sense in practice rather than simply following mathematical tra-
dition.  
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 4.  Why are control-chart constants what they are? 
 

Let’s run one-by-one through the various control-chart constants that we have seen. 
 
Our first control charts were those associated with data from the Experiment on Red Beads.  The details of 
why the control limits were computed in the particular way used there will be explained in the final part of 
this Technical Section. 
 
Then on Day 3 we studied the type of control chart more generally used to analyse one-at-a-time data: the 
moving-range method using the familiar number 2.66.  On page 65 we saw that there is a direct connection 
between the 2.66 and the value of h for n = 2 in the table on page 20.  So let’s move straight on to consider-
ing that quantity. 
 
h was introduced on page 20 as the conversion factor by which a subgroup range R needs to be divided in 
order to scale it down to a number which is comparable to the standard deviation (when the latter exists).  
The same is true with the average range R! .   As with all of the control-chart constants to be covered in this 
section, the values of h are derived under the assumption that the data are normally distributed (in which 
case, of course the standard deviation does exist).  The reasons for this are the same as usual: (a) the 
mathematics cannot be carried out without some such assumption, and (b) the values of h derived using 
that assumption have been found to be pretty useful in practice.  Following what has recently been dis-
cussed, you can probably recall the criterion we use to derive the values of h.  They are the values that 
result in R/h, and equivalently   R

!/h ,  being unbiased estimators of !, i.e. such that E [ R/h ] = !, where ! is 
the standard deviation of the assumed normal distribution.  
 
We then moved on to consider situations where we have subgrouped (a-few-at-a-time) data. This is where 
the  X

!
- R  chart is commonly used, comprising both the  X

!
- chart  and the R - chart.  These two charts, rather 

obviously, have their Central Lines at X!
!

 and R!  respectively, but how far away from them are the control 
limits?  In both cases the answer is in the form of a multiple of R! .  In the case of the  X

!
- chart  the multiplier 

is H, tabulated on page 21:  the control limits are placed at a distance of HR!  either side of the Central Line.   
 
As a matter of fact, with what you know now, you could compute the values of H yourself!  Using Shew-
hart’s 3!-guidance along with the knowledge that the standard deviation of X!  is  !/ n  and that  R

!/h  is an 
unbiased estimator of !, it turns out that 
 

H   =   3
h n

.  

 
But it would be tedious to have to work that out every time you wanted to construct an  X-chart!

!
 This is 

why the table of values of H was included.  
 
As mentioned above, the Central Line of the R - chart is at R!  and the Upper Control Limit is another multiple 
of R! .   The multiple this time is h2 which is tabulated on page 22.  The derivation of h2 follows similar lines 
as previously.  First, the standard deviation of R is computed in terms of !, then an unbiased estimator of ! 
based on R!  is derived, and then that is multiplied by 3 following Shewhart’s guidance.  I trust you are glad 
that, long ago, other people did all that work for you! 
 
There is one final type of control chart that I would like to mention to you.  This takes us back to one-at-a-
time data and is an interesting variant on the familiar chart based on control limits that are placed a dis-
tance of 2.66  MR

——
 either side of X! .   An annoying problem that can sometimes occur, especially if you are 

using a relatively short baseline, is that there might be just one item of data in the baseline which is sub-
stantially higher or lower than all the rest of the baseline data.  For ease of description, let’s suppose it’s 
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higher.  Unless this is either the very first or the very last piece of data in the baseline, it will result in two of 
the moving ranges (one to its left and the other to its right) becoming considerably greater than all the rest.  
This will have two consequences:  one is that the Central Line X!

!
 will be quite a lot higher than it would have 

been otherwise, and the other is that the control limits will be considerably further apart.  In particular, this 
“double whammy” will put the UCL much higher than otherwise.  Of course, if that troublesome item is very 
much higher than everything else then it may still finish up above the UCL despite the amount by which the 
latter has been raised, in which case one would have no hesitation in regarding it as a special-cause signal.  
But, quite often, the troublesome item will have had such a strong influence on the UCL that it finishes up 
below it.  And then it becomes difficult to interpret. 
 
In this sort of case, the sample mean cannot really do a very good job of genuinely reflecting the typical 
kind of values being recorded:  it will still be a lot lower than the awkward value, but it will now be noticeably 
higher than all the rest of the data.  In such a case (both with control-chart work and in other analyses) an 
alternative measure of “average” is sometimes used—one which isn’t so prone to those effects.  This is the 
median of the data.  Imagine that your sample of data is rearranged from lowest value to highest value.  
Then, if the sample size n is an odd number, the median is defined as the central number in that rearranged 
list;  whereas if n is even then the median is defined as halfway between the two middle numbers.  One can 
rearrange the moving ranges in just the same way and thus produce the median moving range.  It’s easy to 
see that both the sample’s median and its median moving range will be largely unaffected by the nuisance 
value:  that high value will be at the top end of the ordered list of data, a long way away from affecting the 
median.  Similarly, the two unusually high moving ranges will be at the top end of the ordered list of moving 
ranges, thus again leaving the median moving range essentially unaffected by those exceptionally high 
moving ranges.  These facts are the motivation for sometimes using the alternative type of control chart 
which has the sample median as its Central Line, and with control limits computed using the median mov-
ing range. 
 
The underlying theory about medians is, as you would expect, different from that about means.  The conse-
quence is that we will need to use a different multiplier from the 2.66 when computing the control limits for 
this alternative type of control chart.  Again the theory assumes a normal distribution and again the result-
ing method is consistent both with (a) Shewhart’s 3!-guidance and (b) using an unbiased estimator of !.   
With this estimator being based on the median moving range rather than the mean moving range, that dif-
ferent multiplier is 3.145.  So the control limits are set at a distance of 3.145 times the median moving 
range either side of the Central Line (which, recall, is now placed at the sample median). 
 
As usual, there are “pros and cons” regarding this alternative method.  I have already discussed the impor-
tant “pro”:  its relative resistance to the effect of a “nuisance value” in the data.  The main “con” that I have 
found when using this method is that (except when there are such nuisance values) the control limits tend 
to be further apart than in the usual method, thus reducing the chart’s ability to signal real special causes.  
This effect is not huge, but I found it to be more than a little annoying.  I therefore finished up using this 
alternative method only when I was analysing a process that had some tendency to produce nuisance 
values, particularly if I was using a relatively short baseline.  So my suggestion is for you to at least keep 
this method at the back of your mind or, perhaps preferably, try it out on some of your own data in order to 
get a “feel” for whether it might be useful to you or not.  It’s just as mathematically “valid” as the standard 
method, so you are free to judge whether it is the pro or the con that appears to be the more important as 
regards analysing your own data. 
 

Just in case the similarity had occurred to you, there is no connection between that constant 3.145 and 
the one usually represented by the Greek letter # (“pi”) which is used e.g. to compute the circumference 
of a circle.  The fact that they are virtually equal is just a fluke.  However, if you are familiar with # then you 
could, of course, use it as a handy reminder of the sort of constant to use when constructing a control 
chart for medians—the difference between them will hardly be noticed!   
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5.  More on the binomial and normal distributions 
 

Both the binomial and normal distributions were introduced in Part D.  The normal distribution was covered 
quite fully, so there is not much to add here:  I shall simply show you how to use commonly-available tables 
to find probabilities. 
 
However, only two very simple binomial distributions were introduced in Part D:  those involving the count 
of Heads when two coins are tossed and then the number of sixes when three dice are thrown.  Here we 
shall firstly tackle binomial distributions more generally. 

 
The binomial distribution 

 
If it is a while since you read that material on the simple binomial distributions at the beginning of Part D 
then I suggest, in order to put yourself back in the picture, you skim through those first few pages (from 
page 37) now before continuing with this more general treatment. 
 
As in those introductory cases, binomial distributions are concerned with a number of repeated indepen-
dent trials of some procedure or operation etc in each of which we will classify the outcome in just one of 
two ways (we had either Head or Tail in the first illustration and either a six or not a six in the second).  I’ll 
follow fairly common practice in the books by referring to these two possibilities as Success and Failure 
respectively (although, e.g. in some inspection procedure, “Success” might refer to “defective” and “Fail-
ure” to “non-defective”!).  “Successes” are simply what we decide to count. 
 
The big general question to tackle now is as follows.  If we denote the probabilities of Success or Failure at 
each trial by p and q respectively (where obviously q = 1 – p ), and we carry out n independent trials of the 
operation, etc, what is the probability that the total number X of Successes obtained is equal to 0 or 1 or 2 
or any specified number up to the maximum of n? 
 
So, in shorthand, how can we compute Prob ( X = x ) for x = 0, 1, 2, ..., n?  Referring back to those early 
pages of Part D, there are two steps in this computation:  one is easy but the other one can be quite 
difficult.  The easy step is to compute the probability of the number of Successes as being equal to x when 
those Successes occur in specific positions in the sequence of Successes and Failures.  So suppose the 
following sequence contains a total of n letters comprising x S’s and n – x F’s: 
 

SFFSSFSFFF ... FSFFFSSF . 
 
That is, the first trial produced a Success, the second and third trials produced Failures, and so on.  Seeing 
that these are independent trials with fixed probabilities of Success and Failure, we can use the simple mul-
tiplication rule (page 77) many times over to obtain the probability:  
   

Prob ( SFFSSFSFFF ... FSFFFSSF )  =  xp n!xq . 
 

The same will, of course, be true for any particular sequence x S’s and n – x F’s.  Therefore the next ques-
tion is:  how many such sequences are there?  Ah:  that’s the tricky bit!  It was easy enough with those sim-
ple introductory illustrations on the early pages of Part D, but it’s not so easy in general.  Now, I know the 
answer to that question, but how can I verify that answer for you? 

The best way to do this that I can think of is to employ a very useful technique called “mathematical induc-
tion”.  Mathematical induction works in a case such as this where we are trying to prove that a result is true 
for all values of n when (a) it’s easy to prove it for some small starting-value of n, usually 0 or 1, and then  
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(b) if we assume it to be true for a particular value of n then we can subsequently prove it to be true for       
n + 1.  I believe you’ll soon see the logic! 

Let’s say (a) it’s easy to see that the result is true for n = 1.  Then we no longer have to assume it’s true for       
n = 1: we know it’s true!  But that means we can use (b) to prove it true for n = 2.  But then we no longer have 
to assume it’s true for n = 2: we know it’s true!  But that means we can use (b) to prove it true for n = 3.  And 
so on, and so on, and ... . 
 
So what is this result I want to prove to you?  For the time being I’ll use the letter r rather than the letter x 
since otherwise there’s a big danger of getting confused between the letter x and multiplication signs.  The 
result to be proved is that the number of sequences containing r  S’s and n – r  F’s is  
 

  

n ! (n"1) !  ...  ! (n" r + 2) ! (n" r +1)
 r ! (r "1) !  ...  ! 2 ! 1      ))))2)))) n( )r )3 

 
The “shorthand” for this big fraction that I’ve shown on the right-hand side is known as a binomial coeffi-
cient.   Notice that there are exactly r terms in both the top and bottom of that big fraction.  Let me show 
that to you by spreading out the denominator like this:  
 

  

n ! (n"1) !  ...  ! (n" r + 2) ! (n" r +1)
  r ! (r "1) !   ... !       2       !       1       

3)
)

Some particular values of this expression are easy to check.  For example, if r = 1 then we get just the 
single term n at the top and the single term 1 at the bottom, with the answer n.  That’s obviously correct 
since the one S can be anywhere in the available n places, thus corresponding to n sequences altogether.  
A further easy check is with r = n, in which case the top and the bottom of this fraction are identical, thus 
giving the answer 1.  That’s also obviously true, since there’s only one sequence consisting entirely of S’s.  
There is just one exceptional case where the big fraction entirely disappears!  That’s when r = 0.  But that 
corresponds to when there are no S’s at all in the sequence, i.e. we have all F’s.  There is obviously only 
one such sequence, and so the binomial coefficient is defined as being equal to 1 when r = 0. 
 
So now, moving on to the induction process, let’s assume that the above binomial coefficient is the correct 
number of sequences of length n which contain r S’s (for all possible values of r ) and see what happens 
with sequences of length n + 1.  The extra place at the right-hand end of the sequence can, of course, be 
filled with either an S or an F.  Let’s suppose first that it’s an S.  Then, in order for there to be r S’s in the 
sequence of length  n + 1, there must be r  – 1 S’s in the first n places. The number of such sequences is 
 

(    )n
r !1 ))2))

  

n ! (n"1) ! (n" 2) !  ...  ! (n" r + 2)
    (r "1) ! (r " 2) !  ...  ! 2 ! 1      ))3 

 
Now suppose the extra place at the right-hand end is an F.  Then, for there to be r S’s in the sequence of 
length n + 1, there must be r S’s in the first n places.  The number of such sequences is, of course, 
 

n( )r ))2)))
  

n ! (n"1) !  ...  ! (n" r + 2) ! (n" r +1)
 r ! (r "1) !  ...  ! 2 ! 1      ))3)

 
So now we hope that adding together these two binomial coefficients will give us a total which is equal to 
the binomial coefficient corresponding to the number of sequences of length n + 1 which contain r S’s.  
Let’s see.  We have 
 

  

n ! (n"1) ! (n" 2) !  ...  ! (n" r + 2)
    (r "1) ! (r " 2) !  ...  ! 2 ! 1      ))4))  

n ! (n"1) !  ...  ! (n" r + 2) ! (n" r +1)
 r ! (r "1) !  ...  ! 2 ! 1       
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2))
  

n ! (n"1) ! (n" 2) !  ...  ! (n" r + 2)
      r ! (r "1) ! (r " 2) !  ...  ! 2 ! 1      

 {r + (n" r +1)}  

 

)))) ) ) )))))2))
  

n ! (n"1) ! (n" 2) !  ...  ! (n" r + 2)
      r ! (r "1) ! (r " 2) !  ...  ! 2 ! 1      

 (n+1) ))2))(    )rn +1 )3 
 
It works!  All the induction proof needs now is a starting value for n.  n = 1 is a good choice!  For then there 
are just two possible sequences: the one comprising a single S and the one comprising a single F.  The 
latter is the exceptional case in the middle of the previous page, and the former is the case where both 
r and n are equal to 1, also covered on the previous page.  So the proof that the number of sequences con-
taining r  S’s and n  –  r  F’s is given by the binomial coefficient as defined opposite is now complete. 
 
Therefore, combining both the initial easy part of the above work and now the second rather more demand-
ing part, we have the complete statement of the probability distribution for the number X of Successes in 
n independent trials as: 
 

Prob ( X = x ) = (  )nx xp n!xq    for x = 0, 1, 2, ..., n. 

 
Hooray!  Now, that’s all very well, but that will still involve a pretty unpleasant amount of arithmetic to actu-
ally get numerical values for all those probabilities!  Also, the prospect of computing the mean and variance 
of the distribution using the formulae  

µ  =   x. Prob (X = x )!  and !2 = 
 

2
x !µ( ) . Prob (X = x )"  

 
as shown at the top of page 76 is also not particularly appealing!  Let’s deal with this latter issue first. 
 
Fortunately, we can bypass those formulae by taking advantage of the additivity properties for both means 
and variances proved in Section 3 (pages 79 and 80).  X, the number of successes, can of course be consi-
dered as   

X =  X1 + X2 + ... + Xn 
 
where X1 = 1 or 0 according as the first trial yields S or F respectively, X2 = 1 or 0 according as the second 
trial yields S or F respectively, and so on through all the n trials.  So, in fact, X1, X2, ..., Xn are all indepen-
dent simple binomial random variables with n = 1.   
 
There’s no difficulty in calculating the mean and variance of each of those!  We have Prob (X1 = 0) = q and 
Prob (X1 = 1) = p, and so clearly we have E[X1] = p, as is also true of E[X2], E[X3], ..., E[Xn].  Thus µ = E[X] = np.  
The variance is almost as easy.  Recall the useful result {V1} on page 79: !2 = E [ X2 ] – µ2 .  Also, of course, 
with both possible values 0 and 1, X1

2 is very fortunately equal to X1!  That being the case, E [ X1
2 ] = E[X1] = 

np.  So this gives us the variance of X1 as E [X1
2 ] – E[X1] 2 = p – p2 = p (1 – p) = pq.  The same will be true of 

the variances of each of X2, ..., Xn.  And so finally we can use the additivity property for variances (see {V3} 
on page 80) to obtain the variance of X, i.e. !2, as npq.  Those important results are worth displaying: 
 

For the binomial distribution as defined above, µ = np and !2 = npq = np(1–p). 
 

Before returning to the matter of how to easily obtain numerical values for all those binomial probabilities 
(binomial coefficients and all!) there is one loose end to tidy up.  So far in these Optional Extras we have 
revisited all of the various control-chart constants and types of control limits that we had encountered 
during the course—except for just one case.  That exception is the control limits used on the control charts 
constructed to examine data from the Red Beads Experiment.  On Day 2 page 20 we saw: 
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Technical Aid 1 

 
One of the earliest applications of Shewhart’s invention of the control chart was for batch inspection of 
mass production processes.  In such inspection, samples (batches) of n items from the process’s output 
are regularly drawn and inspected, and the number X of defective items recorded.  After several samples 
have been inspected, the control limits are computed as follows. 
 
Using the statistician’s traditional shorthand for averages, X! represents the average number of defectives 
found in the samples so far, while p! = X! ÷ n is the average proportion of defectives in the samples.  
Shewhart’s guidance about control limits then leads to the upper and lower limits being placed at  
 
                                          

!
UCL = X + 3 X (1! p)! !      and      

!
LCL = X ! 3 X (1! p)! ! .    

 

 
We have just shown that, for a binomial distribution, !2 = np(1–p) which is, of course, saying that the stan-
dard deviation ! = np(1! p).   So the distance from the Central Line shown in that Technical Aid takes the 
form of Shewhart’s “3!” except that it uses an estimate of ! since p is not known.  This is a similar kind of 
argument to that used for the other various types of control limits we have seen: indeed, an exact value of 
“!” often doesn’t even exist in practice as the conventional statistician understands it.  But it does here.  
And when it does exist then what we use is a sensible unbiased estimator of it.  As I have said before, this 
is not an exact science! 
 
In fact, in this case, a further approximation has been made.  If you think about it you will realise that X = 
the number of red beads in the paddle cannot be exactly binomially distributed, whatever assumptions you 
might care to make.  One of the assumptions is that the sample (of size 50 in the case of the Red Beads 
Experiment) can be expressed as the sum of simple binomial random variables X = X1 + X2 + ... + X50 where 
each one of these 50 variables has probability p of being a red bead irrespective of what happens else-
where in the sample.  For this argument let’s imagine that the 50 holes in the paddle are numbered 1, 2, ..., 
50.  But if, say, there is a red bead in Hole Number 1 then there are now just 3,999 beads left—799 of them 
red and 3,200 of them white—compared with the 4,000 beads that we started with of which 800 were red.  
So, with a red bead in Hole Number 1, the proportion of red beads available for Hole Number 2 is very 
slightly less than the 0.2 that we started with.  And so on.  However, when relatively small samples are 
drawn from relatively large populations, it is usual to ignore such little matters!  In any case, as already dis-
cussed in Part E, it is highly unlikely that the sample of 50 beads in the paddle can truthfully even be con-
sidered as a random sample, which is another good reason for not worrying too much about such a minor 
complication! 
 
However, Mathematical Statisticians might be interested in how to compute the probabilities of the number 
of red beads in the paddle if we make all the assumptions that they might like to make but now, in addition, 
take that complication into account.  Actually, with what you have now learned, you could tell them!  The 
probability of x red beads in the paddle will surely be the number of possible selections of x red beads from 
the container multiplied by the number of possible selections of 50 – x white beads and then divided by the 
total number of different selections of 50 beads out of the 4,000 available.  That probability can thus be 
expressed in terms of binomial coefficients as 
 

(   )800
x (     )3200

50!x  
                                . 

                                      
 
 
If you’d like to impress the Mathematical Statistician even further, you can tell him that the probability distri-
bution comprising those delightful probabilities is called the hypergeometric distribution!  And if you’d like 

(    )4000
50
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to go the whole distance then you can also provide him with details of how good the binomial distribution is 
as an approximation to that hypergeometric distribution by showing him the following table of probabilities:   
 
                   x =    0       1       2       3       4       5       6       7 
 Hypergeometric  0.00%   0.02%   0.10%   0.42%   1.25%   2.91%   5.49%   8.68%    
       Binomial  0.00%   0.02%   0.11%   0.44%   1.28%   2.95%   5.54%   8.70% 
 
                      x =     8       9       10      11      12      13      14      15 
 Hypergeometric  11.72%  13.71%  14.07%  12.79%  10.37%   7.55%   4.96%   2.96%    
       Binomial  11.69%  13.64%  13.98%  12.71%  10.33%   7.55%   4.99%   2.99% 
 
                      x =    16      17      18      19      20      21      22    23 etc 
 Hypergeometric  1.60%   0.79%   0.36%   0.15%   0.06%   0.02%   0.01%   0.00%    
       Binomial  1.64%   0.82%   0.37%   0.16%   0.06%   0.02%   0.01%   0.00% 
 
Well—this part of these Optional Extras is titled the “Technical Section”! 
 
That brings us to the final issue to be discussed regarding the binomial distribution: how to obtain those 
binomial probabilities without getting involved with too much unwieldy arithmetic.  The answer is to have a 
suitable set of Statistics Tables by your side.  And there, as you might suspect, I must declare an interest! 
 
The better of my two little books of Statistics Tables for this purpose is Elementary Statistics Tables (EST). 
At the very beginning of EST there are four pages of tables of probabilities Prob ( X = x ) in binomial distribu-
tions.  They cover all values of n up to 20 and an extensive range of values of p: 0.01 to 0.10 and 0.90 to 
0.99 in steps of 0.01, 0.15 to 0.85 in steps of 0.05, and the fractions 16 , 1

3 , 23  and 56 .  
 
However, sometimes one wants the probability that X lies in some interval of values rather than the prob-
ability of just a single value.  That could, of course, involve adding up quite a number of individual probabil-
ities.  To avoid the need for that there are also four pages (covering the same range of values of n and p) of 
the cumulative distribution function (cdf) of X.  Tables of the cdf are even more important for the normal 
distribution, as we shall soon see.  The cdf (let’s denote it by F(x)) gives the probability that X is less than or 
equal to x: F(x) = Prob ( X�����x ).��The advantage of the cdf is that you only need to look up just two probabili-
ties in order to find the probability that X lies in an interval, never mind how wide the interval is.  
 
For example, suppose you want the probability that X takes some value between 4 and 8 inclusive.  Then 
the only table entries that you need look up are F(8) and F(3) since, clearly, 
 

 Prob (4    X    8) = Prob (X    8) – Prob (X    3) . 
 

Careful: don’t subtract Prob (X    4)!  On page 48 I also mentioned that sometimes we need the probability 
that X lies in a “one-sided” interval, i.e. the probability that X is at most some number or X is at least some 
number.  The first of those two options is simply the cdf value at that number, e.g. 
 

Prob (X    8) = F(8). 
 

Or if you wanted the probability that X is at least 8 then that would be     �� 
 

Prob (X    8 ) = 1 – F(7). 
 
Finally, since the tables only go up to n = 20, how can we find probabilities for larger values of n without 
needing to do a lot of arithmetic?  For this purpose, and recalling the Central Limit Theorem, it is often pos-
sible to use tables of the normal distribution to obtain good approximations to binomial probabilities.  So I’ll 
return to that matter in the bottom half of page 91 after now describing how to use widely-available tables 
of the normal distribution.  
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The normal distribution 
 
Part D includes a fairly extensive introduction and discussion on the normal distribution.  So effectively all 
that is left is (as promised on page 50) to introduce you to the tables of the normal distribution that you will 
find in all introductory books on Statistics and plenty of other sources as well.  In EST the main table is on 
pages 18–19 and in ST it’s on pages 34–35. 
 
As you are now well aware from Part D, since the normal distribution is a continuous distribution we cannot 
now sensibly consider probabilities of individual values.  So we have already pointed out that it is the prob-
ability of the normal random variable lying in an interval (including the “one-sided” type of interval just men-
tioned on the previous page) which does make sense.  Indeed the pictures on page 49 have already shown 
you examples of this.  So what are the details? 
 
The published tables invariably apply directly just to the standard normal distribution, i.e. N(0,1), the normal 
distribution having mean 0 and variance 1.  Fortunately, following on from some of the development in 
Part D, that is sufficient for us to be able to find probabilities in any normal distribution. 
 
But one thing at a time.  Let’s first familiarise ourselves with just finding probabilities in N(0,1).  The stan-
dard normal distribution is such an important distribution that it is often given a special notation which usu-
ally applies only to N(0,1) and to no other distribution.  And that is, of course, the notation you will find in 
both EST and ST.  A N(0,1) random variable is almost always denoted by Z rather than X, and its cdf is 
usually denoted by $   (capital “phi”).  The tables mostly found in the books are tables of $ (z).  Here is an 
abbreviated version of such a table: 
 
   
           z       0      1      2      3      4      5      6      7      8      9 
 
          –3.  0.0013   0010   0007   0005   0003   0002   0002   0001   0001   0000       
          –2.  0.0228   0179   0139   0107   0082   0062   0047   0035   0026   0019 
          –1.  0.1587   1357   1151   0968   0808   0668   0548   0446   0359   0287 
          –0.  0.5000   4602   4207   3821   3446   3085   2743   2420   2119   1841 
 
           0.  0.5000   5398   5793   6179   6554   6915   7257   7580   7881   8159 
           1.  0.8413   8643   8849   9032   9192   9332   9452   9554   9641   9713 
           2.  0.9772   9821   9861   9893   9918   9938   9953   9965   9974   9981 
           3.  0.9987   9990   9993   9995   9997   9998   9998   9999   9999   1.00 
 
 
This short table provides values of $ (z) for z ranging from –3.9 to +3.9 in steps of 0.1.  The usual full pub-
lished tables provide values of z in steps of 0.01 with some additional proportional parts allowing close 
approximations to $ (z) for z expressed to three decimal places.  However, this brief table is sufficient to get 
you started on finding probabilities in normal distributions. 
 
Let’s read off a few values.  For a start, Prob ( Z    1 ) = 0.8413 and Prob ( Z    1.5 ) = 0.9332.  Remembering 
that probabilities are represented by areas under the normal curve, you might like to check the value of 
Prob ( Z    1) approximately by adding up the relevant areas in the pictures on page 49.  Let’s also read off 
Prob ( Z    –1 ) = 0.1587.  Notice that this is equal to 1 – Prob ( Z    +1).  That is bound to be true because of 
the symmetry of the normal curve.  But 1 – Prob ( Z    1 ) = Prob ( Z    1 ), so this is simply confirming that the 
area under the standard normal curve to the right of z = +1 is equal to the area to the left of z = –1. 
 
It is also worth noting that, when considering probabilities in a normal distribution, as is the case with any 
continuous distribution, we do not have to worry as to whether we should write, for example, Prob ( Z    1 ) 
or Prob ( Z  > 1 )—these probabilities will be the same as each other because of the feature that, in continu-
ous distributions, the probability of any single value is zero!  That is, of course, wholly different from what 
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happens with discrete distributions.  Recall the sentence from page 89 when we were discussing binomial 
distributions: “if you wanted the probability that X is at least 8 then that would be Prob ( X    8 ) = 1 – F(7)”, 
i.e. the probability that X�����8 = 1 – Prob ( X    7 ), not 1 – Prob ( X    8 )! 
 
Let’s give just one further illustration.  Suppose that, for some reason, you wanted to find the probability 
that Z lies in the interval between –1.3 and 1.8:  Prob ( –1.3    Z    1.8 ).  All you have to do is look up both  
$ (–1.3) and $ (1.8) in the table, giving respectively 0.0968 and 0.9641, and subtract one from the other: 
0.9641 – 0.0968 = 0.8673.  This is because $ (1.8) gives the total area to the left of 1.8 under the standard 
normal curve and $ (–1.3) gives the area to the left of –1.3 which is the part of $ (1.8) that we don’t want to 
be included in our interval. 
 
Now let’s see how to obtain probabilities for any normal distribution N(µ,!2), not just N(0,1).  Perhaps it’s 
worthwhile to take yet another look at page 49 to remind yourself of the extremely fortunate fact that those 
areas representing the probabilities under any normal curve stay the same, irrespective of which normal 
distribution we have.  In particular, comparing the random variable, X say, which has a N(µ,!2) distribution, 
with our N(0,1) random variable Z for which we can now use that table of values of $ (z) to find probabilities, 

we have the exceedingly useful fact that 
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That’s to say the cdf of X, F(x) = Prob ( X ������x), can be found by “standardising” the value x by forming   

z  =  
 

x ! µ
"

  �
 
and looking up the value of $ (z) at that value of z in the table. 
 
As an example, if X has the N(5, 22) distribution, i.e. is normally distributed with mean µ = 5 and standard 
deviation ! = 2, then F(8) = Prob ( X � � �  8 ) = $ (1.5) = 0.9332 since 1.5 is the standardised version of 8, 
obtained by subtracting µ and dividing by !, i.e. subtracting 5 and then dividing by 2. 
 
And then, following the various illustrations you’ve already seen, you can now find probabilities of anything 
you need, involving any normal distributions, just using a table of values of $ (z). 
 
Finally, as promised on page 89, let’s see how probabilities for binomial distributions with larger n (n > 20 in 
the case of both EST and ST) than contained in your book of Statistics Tables can be found, again without 
involving a lot of arithmetic.  As stated there, the Central Limit Theorem can often be used.  In words rather 
than symbols, the Central Limit Theorem says that the distribution of a sample mean becomes more and 
more like normal as the sample size increases.  Referring back to where we introduced the Central Limit 
Theorem on page 51, we then made use of what we now know to be the mean and standard deviation of 
the sample mean to carry out the “standardising” operation (subtracting the mean and dividing by the stan-
dard deviation) in order to produce an approximate N(0,1) random variable whose probabilities can be 
found from the tables.  Here it’s more convenient to consider the distribution of X rather than X! since it is, 
of course, X which has the binomial distribution, not X! .  That’s not a problem: X is just a multiple of X!  and 
so has the same-shaped distribution.  We just have to be sure to use the mean and standard deviation of 
X rather than X! in the standardising operation.  So our variable that is now well-approximated by N(0,1) is 
  

Z   =  X ! np
npq

 . 

 
The really useful aspect of the Central Limit Theorem for practical purposes is what the computer simula-
tions then showed on pages 52–54: i.e. that for reasonably symmetric distributions the tendency toward 



!"#$%&'#()#$*+,-.##/##01(,)-%2#34(5%'#

!"#$%&'()*+#,'-)).))"'/0)*$)

normality becomes evident for quite small, sometimes very small, values of n.  The binomial distribution is 
exactly symmetric if p = q = 

1
2  but become increasingly unsymmetric as one of p or q gets close to 0 and 

the other gets close to 1.  The general guidance to be found in the books is that the normal distribution pro-
vides good approximations to binomial probabilities as long as np    5 if p    q (or nq    5 if q < p).   
 
But the binomial distribution is discrete while the normal distribution is continuous.  So how exactly do we 
find those good approximations to binomial probabilities from tables of the (standard) normal distribution?  
There’s a good clue in the way that histograms were drawn e.g. on pages 38–39.  Those histograms have 
boxes which are centred on the actual integer values of the random variable, e.g. the box representing       
X = 2 stretches from 112  to 2 1

2 .   So we now do the equivalent here.  To find the probability (to within a good 
approximation) that X = x we find the probability under the relevant normal distribution between x – 1

2  and 
x + 1

2 .   By “relevant normal distribution” I mean the normal distribution which has the same mean and vari-
ance as the binomial distribution.  
 
Let’s look at a couple of examples.  Consider the binomial distribution having n = 100 and p = 

1
5 .   What is 

the probability that X = 22?  The mean and variance of X are µ = np and !2 = np(1–p) respectively which 
give us µ = 100 ! 1

5  = 20  and 2!  = 100 " 1
5 " 4

5  = 16 , i.e. ! = 4.  In the corresponding normal distribution we 
want the area between 2112  and 22 1

2 .   Standardising these two values (i.e. subtracting 20 and dividing by 4) 
gives us 

3
8  and 

5
8  respectively, i.e. 0.375 and 0.625.  Since these numbers involve three decimal places, we 

can’t read these directly from the brief table on page 90, so I need to use more detailed standard normal 
tables to tell you that the probabilities are 0.6462 and 0.7340 (although you could get these roughly from 
the table on page 90 by interpolating between the entries for 0.3 and 0.4 and between 0.6 and 0.7).  Sub-
tracting 0.6462 from 0.7340 then gives us the approximate probability of X = 22 as 0.0878. 
 
Finding the probability of X lying in some interval is no more difficult.  For example, suppose we want to 
find a good approximation to Prob ( 18    X    25 ).  This corresponds to the area between 17 1

2 and 25 1
2 or, 

standardising, between ! 5
8  = – 0.625 and 

11
8  = 1.375 whose entries in the standard normal table are 0.2660 

and 0.9155.  And so we finish up with Prob ( 18 ����X    25 ) being approximately 0.9155 – 0.2660 = 0.6495.  
 
There’s just one piece of the jigsaw left to fit in.  You’ll recall the guidance that it’s reasonable to use the 
normal distribution as an approximation if np    5 (with p     q).  So how about when n > 20 but np < 5 (again 
with p   q)?  Let’s take n = 100 again but now with p = 0.02.  There is a well-known discrete probability 
distribution that works well in these cases.  It’s the Poisson distribution which is tabulated on EST pages 
14–16.  Here you can simply enter the table of the Poisson distribution at the appropriate value of µ which 
is np = 2.  First, let’s consider the probability of a particular value, say X  = 3 .  The table of the Poisson dis-
tribution gives Prob ( X = 3 ) as 0.1804.  Secondly, let’s consider the probability of X lying between 3 and 5 
inclusive.  Here you have two options.  Firstly, you could just look up the probabilities of X = 3, 4 and 5 and 
add them up, giving 0.1804 + 0.0902 + 0.0361 = 0.3067.  But that could get quite tedious for wider ranges 
of values.  So alternatively, on EST page 17, there is a chart from which we can read off the values of Prob    

( X    x ) with excellent accuracy for probabilities near 0 or 1 and reasonably confidently to two decimal 
places for probabilities near 

1
2 .  NB: That’s not a misprint!  The chart does indeed provide the probabilities 

Prob  ( X    x ) which is the opposite way round from the cdf’s Prob ( X    x ).  But I won’t bore you by trying to 
explain why this is the way that such Poisson charts have traditionally been constructed!  To obtain an 
approximation to Prob ( 3    X    5 ), the chart gives Prob ( X    3 ) and Prob ( X    6 ) as about 0.32 and 0.015 
respectively so that Prob ( 3    X    5 ), i.e. Prob ( 3, 4 or 5 ), is around 0.32 – 0.015 = 0.305. 
 
To give you some idea of the accuracy of these various approximations, I have also computed these prob-
abilities directly from the exact expression for binomial probabilities a third of the way down page 87.  For 
the case of n = 100 and p = 0.2 I obtained Prob ( X = 22 ) = 0.0849 (compared with 0.0878) and for an interval  
I obtained Prob ( 18    X    25 ) = 0.6413 (rather than 0.6495).  Then for the case of n = 100 and p = 0.02            
I obtained Prob ( X = 3 ) = 0.1823 (rather than 0.1804) and Prob ( 3    X    5 ) = 0.3078 (rather than the 0.3067 
or 0.305).  I’d say that both methods using the Poisson approximation to the Binomial work pretty well!  


